
In-network computing to the rescue of faulty links
Hans Giesen

University of Pennsylvania
Lei Shi

University of Pennsylvania
John Sonchack

University of Pennsylvania

Anirudh Chelluri
University of Pennsylvania

Nishanth Prabhu
University of Pennsylvania

Nik Sultana
University of Pennsylvania

Latha Kant
Perspecta Labs

Anthony J McAuley
Perspecta Labs

Alexander Poylisher
Perspecta Labs

André DeHon
University of Pennsylvania

Boon Thau Loo
University of Pennsylvania

ABSTRACT
Failing network links are usually disabled, and packets are routed
around them until the links are repaired. While it is often possible
to utilize some of a failing link’s capacity, losing what remains of a
link’s capacity is typically deemed preferable to the erratic effect
that unreliable links can have on application-level behavior.

We describe a new network function that relies on in-network
computing to limit the erratic effect of failing network links, to
enable the continued use of those links until they can be repaired.
We explore the design space using ns-3, and evaluate our implemen-
tation on a physical test-bed that includes programmable switches
and reconfigurable hardware. Our current hardware prototype can
almost saturate a 10GbE link while using around 10% of our FPGA’s
resources.

CCS CONCEPTS
• Networks → Programmable networks; Error detection and
error correction; Data center networks;

KEYWORDS
P4, FPGA, In-Network Computing, Fault Mitigation

ACM Reference Format:
Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth Prabhu,
Nik Sultana, Latha Kant, Anthony J McAuley, Alexander Poylisher, André
DeHon, and Boon Thau Loo. 2018. In-network computing to the rescue of
faulty links. In Proceedings of ACM SIGCOMM 2018 Workshop on In-Network
Computing conference, Budapest, Hungary, August 2018 (NetCompute’18),
6 pages.
https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
NetCompute’18, August 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

0 50 100 150 200 250 300
Time (seconds)

0

2

4

6

8

TC
P

Th
ro

ug
hp

ut
(G

b/
s)

Loss Rate
10−1

10−2
10−3

10−4
10−5

10−6
10−7

0

Figure 1: Intermittent packet drops at low rates, like those
caused by faulty links, drastically reduce TCP throughput.

1 INTRODUCTION
Advances in networking, hardware architecture, and programming
languages in recent years have converged to make the choice be-
tween network performance and programmability easier: one can
increasingly afford both. This has enabled research into hardware
implementations of various applications that were previously con-
fined to software for programmability or to expensive and inflexible
ASICs for performance.

Most prior research in this area has adapted existing applications
to run in hardware at line rate. Example applications include key-
value stores [7], and regex matching on payloads [14].

In this paper we describe Wharf, which to our knowledge is
the first application of its kind. Wharf is an in-network distributed
mitigation of faulty links. Our design requires minimal configura-
tion, is transparent to end-points and does not conflict with existing
network architecture choices (e.g., the network’s topology, and how
packets are routed over it). We evaluate implementations for CPUs
and FPGAs, and model a modified design using ns-3.

Wharf can work with various types of networks, but we think it
can be especially helpful in mitigating failing links in datacenters,
which has previously been studied by Zhuo et al. [15]. Datacenter
networks are ever more expansive and their architecture involves
a large number of links to attain a larger bisection bandwidth [12].
Their performance is critical to many widely-used applications,
including those running on private and public clouds. Faulty links
have a significant impact on these applications, as Figure 1 illus-
trates. The current practice of polling and disabling links from

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

NetCompute’18, August 2018, Budapest, Hungary H. Giesen et al.

the edge of the network reacts slowly and adds more contention
over non-failing links. Wharf can help make such networks more
resilient to failing links, with minimal configuration overhead.

Running Wharf as an in-network function makes more sense
than running it in end-hosts since the problem that Wharf mitigates
is typically restricted to a fraction of the network. Applying Wharf
to end-hosts adds overhead to all links, also the links that never fail.
Just as some application features are best managed end-to-end [11],
handling link failure seems best done at the link’s level. Not only are
we able to identify the faulty link directly, but, unlike higher-layer
protocols, we can also distinguish link failure from congestion.

Programmable network hardware alone is not sufficient to solve
this problem: one also needs a careful design since link management
might interfere with other features of the network, such as topology
and routing [4], transport [9] and load balancing [1]. In designing
Wharf, we sought to make it transparent to other features of the
network, to facilitate its interoperation with existing networks.

Our contributions include (i) a link-layer forward error-correction
(FEC) scheme to mitigate failing links, and (ii) an FPGA implemen-
tation of this scheme that fully utilizes 10-Gbps links. Part of our
implementation is in P4 [2] over SDNet. P4’s limitation to header
processing was transcended by writing external functions in C for
high-level synthesis. The key challenge we encountered was in
streaming packets through our external functions.

The next section describes the background and related work of
the problem we are solving, before we describe our design (§3) and
implementation (§4), which we evaluate (§5) before concluding.

2 BACKGROUND
A communication network is architected to handle variation in its
state arising from environmental interference, component failure,
congestion and corruption of data. In this paper we describe a
technique to enhance the reliability of networks with failing links.

Our approach could be compared to existing link-layer mitiga-
tions for unreliable transmission, such as network-wide hop-by-
hop protection, as in X.25 [5], and link-layer retransmission as
in the 802.11 [3] family of standards. The mitigation chosen for
each system mostly depends on the transmission medium: X.25
was designed to work with unreliable links, whereas 802.11 uses
a shared medium. Our thinking is similar, and our design is based
on properties of the medium: we concentrate on wireline 10Gbps
Ethernet; typically such links are reliable (i.e., have low error rates)
and they are not shared (i.e., point-to-point). Instead of using an
ARQ scheme as in X.25 and 802.11, we use forward error-correction
(FEC). This simplifies our design, obviating the need for retransmis-
sion windows and this diminishes the memory needed for in-flight
data since the sender will not attempt to resend a frame.

Our link-layer FEC complements the physical-layer FEC that is
used in high-capacity Ethernet links: the physical-layer FEC helps
the link sustain a given capacity over longer distances, whereas
our FEC is intended to mitigate errors that do not arise because of
challenging environmental factors; rather the errors arise because
of physical damage to the link or failing transceivers [15]. Note
that changing the PHY-layer FEC would deviate from the Ethernet
standard, leading to loss of interoparability with COTS hardware.

Our approach also complements higher-layer reliability mea-
sures, as provided by TCP for example. TCP provides end-to-end
reliability, whereas we concentrate on link-level reliability. Unlike
TCP, we are able to distinguish congestion from corruption as the
cause of packet loss, and we are able to locate the lossy links in
the network. Thus we can react to them much more quickly than
TCP at the end-points; we evaluate this in §5. We show that, as
with using TCP alone, our mechanism results in a reduced trans-
mission rate, but Wharf helps TCP over lossy links to improve its
throughput under high loss rates. Experiments using the QUIC
transport protocol suggested that the gains of end-to-end FEC did
not outweigh the bandwidth overhead (even ifh = 1), and adversely
affected some kinds of traffic [6, §7.3]. In this paper we use FEC
to cross a single link, rather than multiple links only one of which
might be faulty.

In this paper we focus on Clos topologies which are used in
datacenters [12]. Our design could be useful in mitigating faulty
links in a Clos topology due to the large number links it uses when
compared to a hierarchical topology, which exposes it more to
link-related faults.

Centralized approaches have been described in the literature to
mitigate faulty links in a WAN [8] and datacenters [15]. In compari-
son our approach is not centralized, and takes place in the network:
a switch can activate FEC with adjacent switches over faulty links
until the links are replaced or repaired.

3 DESIGN
Wharf infers failing links and follows a policy on how to process
frames that are about to cross failing links. It uses a forward error-
correction (FEC) scheme to enable the next hop to recover frames
that were lost in transit by using extra parity frames that are in-
serted into the medium.

In this section we describe Wharf’s policy choices for managing
failing links, and how the chosen policy is followed in the network.

3.1 Traffic classification
Wharf is configured to have a number of traffic classes, which
partition the frames arriving at a switch. Outbound frames are
encapsulated and complemented with parity frames, forming blocks
that are sent across the faulty link. Each class c is defined by a
map T : c 7→ (k,h, t), where k is the number of frames in a block,
h is the number of parity frames sent for each block, and t is the
timeout. The values (k,h, t) influence the latencywithwhich frames
belonging to c cross the switch, as well the likely recovery of frames
belonging to c .

3.2 Link-failure management policy
For each port the policy stipulates how to react if the link becomes
faulty: frames are either dropped (i.e., the link is disabled), or they
are processed to use FEC. For the latter case, the policy specifies
what are the traffic classifications, and how each classification maps
into parameters (k,h, t).

3.3 Execution
Wharf consists of three concurrent activities carried out for each
port of a switch:

In-network computing to the rescue of faulty links NetCompute’18, August 2018, Budapest, Hungary

Figure 2: Packet numbering on lossy link between two
switches. For low failure rates, assigning monotonically in-
creasing frame numbers n that are unique within a block
is sufficient to distinguish successive blocks. On links with
bursty loss behavior, adding a block sequence number helps
to distinguish packets. Note that frame reordering is not pos-
sible because the frames are being sent over the same link,
and their processing is sequential across that link.

• Link monitoring agent attempts to infer link malfunction.
• Sending proxy processes frames and adds tags before they
are sent over a faulty link.
• Receiving proxy processes inbound Wharf-tagged frames.

Frames to be sent over non-faulty links, and inbound frames
that are not Wharf-tagged, are processed as normal by the switch.
Otherwise outgoing frames are processed by the Sending proxy
prior to egress, and inbound frames by the Receiving proxy after
ingress.

Link monitoring agent. We continuously poll network port coun-
ters to infer malfunctioning transceiver modules or links. This is
done as in CorrOpt [15], but failure-inference is done locally on the
switch, rather than remotely. Sometimes a switch cannot itself real-
ize if one of its links is malfunctioning, since the malfunction would
be inferable from the adjacent element’s counters (e.g., through an
increase in frame errors). Thus switches might need to inform each
other about errors on the transmitting side. To do this we employ
LLDP and use a custom TLV to signal to the receiving switch that
the link (for traffic travelling in the opposite direction) is failing.

Wharf frame encapsulation. As Fig. 2 demonstrates, frames sent
over faulty links are tagged to allow the receiving switch to distin-
guish frames processed by Wharf and to provide the traffic classifi-
cation and index of a packet within a block. The tag also includes a
block identifier to protect against bursty losses.

Sending proxy. The encoding of a block – to produce parity
frames – is triggered when the block is full (all k frames have
been accounted for) or t for that c expires (relative to when the first
frame was inserted into the block). Non-parity frames are tagged
and forwarded immediately.

Due to its operation, the sending proxy can cause congestion at
egress. For example, if k = h, and we are receiving traffic bound
for a faulty link at rate R, then we would need to send at rate 2R
at each interval of k incoming frames, at which time the sending
proxy produces h additional frames for output. We simply drop new
frames that cannot be put onto the link fast enough (i.e., before they
are placed into a block). This loss will communicate to higher-layer

Figure 3: Prior to decoding a block on arrival, each block is
mapped to the buffer for its traffic class. A dotted border in-
dicates that a frame has been lost while transiting.

Ethernet
MAC

Header
processing

(P4)

Encoding
(decoding)

(HLS C)

Header
processing

(P4)

Ethernet
MACO

rig
in

a
l

p
a
cke

t

O
rig

in
a
l

p
a
ylo

a
d

E
n
co

d
e
d

p
a
ylo

a
d

E
n
co

d
e
d

p
a
cke

t

Figure 4: Block diagram of FEC encoder / decoder pipeline.

protocols that congestion is occurring so the end-hosts’ network
stacks can react to this congestion as they normally would.

Receiving proxy. Wharf-tagged frames are buffered as shown
in Fig. 3, and non-parity frames are untagged and forwarded im-
mediately. For each c , if its t (relative to when the first frame was
buffered) expires, or a frame from a successive block arrives, then
decoding is triggered. Decoding consists of using the parity frames
to reconstruct the lost data frames; if no data frames have been lost
then there is no more work to be done for this block.

4 IMPLEMENTATION
4.1 Overview
We implemented Wharf on the Xilinx Zynq UltraScale+ MPSoC
ZCU102 Evaluation Kit. This board has 4 SFP+ cages, andwe process
network traffic on its ZU9EG System-on-Chip FPGA, which consists
of a quad-core ARM Cortex-A53, a dual-core ARM Cortex-R5, and
a programmable fabric with 274K lookup tables (LUTs) and 1800
18Kb embedded memories (BRAMs).

A top-level diagram of the implementation is shown in Fig. 4. We
implement header processing in P4 [2], which is compiled to FPGA
logic using Xilinx’s SDNet tool suite. Header processing (described
further in §4.2) includes the frame tagging described in §3.

The frame is then forwarded to the FEC core, which can be
an encoder (for the Sending Proxy) or decoder (for the Receiving
Proxy). P4 is not suitable for exploiting the parallelism of the FEC
core, so we implemented the core in hardware-synthesizable C. The
code can be compiled and executed on a general-purpose CPU, but
we can also synthesize the code for an FPGA in Vivado HLS. Guided
by pragmas added by the developer, Vivado HLS takes advantage
of parallelism in the code to achieve high performance.

The encoded or decoded output of the FEC core feeds into the
header post-processing, which encapsulates the payloads in Ether-
net frames, before packets are returned to the network.

NetCompute’18, August 2018, Budapest, Hungary H. Giesen et al.

Post-
processor

Pre-
processor

Packet
Port In

Packet
Port Out

FEC External Function

FEC UserEngine

P4

PX

C FEC Implementation

Packet In Packet Out

Packet Stream In Packet Stream Out

Data Words In Data Words Out

Figure 5: Abstraction provided by each layer; grey blocks are
translated to the pipeline illustrated in next level.

4.2 Header processing
We use P4 to implement high-level packet processing logic and use
Xilinx’s P4-SDNet toolchain to translate our P4 program into RTL
and integrate modules together. Our P4 program carries out packet
parsing, header tagging, payload extraction for the encoder, and
book-keeping of packet classes.

Since we compute over whole frames – and not only headers –
we could not write our entire system in P4. We wrote the header
processing part of our system in P4, and called out from the P4 code
to carry out the more general computing we need for FEC (§4.3),
which we implemented in hardware-synthesizable C.

This crossing from P4 to more general logic emerged as a very
important part of our implementation, since whole packets must
flow through it between two different levels of abstractions. As is
shown by Fig. 5, we used SDNet’s extensible pipeline to implement
our function as a stream processor with cut-through behavior and
glue it to the header processor.

4.3 FEC Encoder
In this section we describe our generation of parity frames. Cur-
rently we can only decode on a CPU; our FPGA implementation of
the decode is work-in-progress.

In Wharf, error correction is performed with a Reed-Solomon
erasure (RSE) code [10]. Assuming we have a vector x , which con-
tains a message with k symbols ofm bits, encoding consists merely
of multiplying x with a k × n generator matrix G. The result is an
n-symbol codeword c = xG , where n satisfies n = k + h. The coeffi-
cients of the generator matrix are constants that are determined by
the values of k and h. What makes RSE complex is that arithmetic
operations are performed in a finite (Galois) field to ensure that
mathematical operations on integers in a finite range yield again
integers in the same range. In §3, we used k and h also to count
packets. This choice was intentional as Figure 6 demonstrates. Due
to space limitations, we will not discuss RSE in more detail.

The encoder could be implemented to work in two ways: non-
incrementally on a block of packets, or incrementally as each packet
arrives. The non-incremental approach is more straightforward,
but incurs high latency and storage requirements, since encoding
cannot start until all packets in a block have been received.

We opted for the incremental approach, which exploits the asso-
ciativity of addition to rearrange the terms of the sums that form
the matrix-vector multiplication. When a new input symbol is re-
ceived, the partial sums for that symbol are calculated and the
output symbols are updated.

h parity
packets

Encoder

0

x0 x1 x2 c0 c1 c2 c3 c4

k data
packets

Pa
ck

e
t

Message (x)

Codeword (c)

k data
packets

Figure 6: Correspondence between packet data, messages
and codewords.

We now derive the resource requirements in terms of multipli-
cations. The matrix-vector multiplication requires k × n multiplica-
tions. The first k columns are an identity matrix because RSE does
not alter data packets. The output values can be computed without
multiplications. The remaining kh multiplications are performed
once for each k-symbol message, resulting in h multiplications
per input symbol. As a consequence, we expect that providing a
higher level of protection against erasures for a given throughput
constraint requires more hardware. The encoder receives packets
from a 10-Gbps Ethernet MAC via a 64-bit AXI bus at a 156.25 Mhz
line rate. For 8-bit symbols, 8 matrix-vector multiplier instances
running at line rate would suffice to sustain 10 Gbps, so altogether
8h Galois-field multiplications are needed. To save resources, we
use an implementation that computes the multiplicationm of a and
b with the formulam = e loga+logb . The logarithms and exponents
can be looked up in 8-bit tables with 256 entries. Such tables can
be implemented in the local memories (BRAMs) of the FPGA. The
coefficients of the generator matrix are constants. The associated
logarithms can be precomputed, leaving only 2 lookup tables per
multiplier, resulting in a grand total of 16h BRAMs.

Listing 1 shows the source code of the matrix-vector multiplier.
It can be compiled with a regular software compiler and executed
on a microprocessor for a software implementation or to debug the
code. In addition, Vivado HLS can generate an FPGA implementa-
tion from the code, guided by the pragmas, which are ignored by
software compilers. A similar implementation in Verilog or VHDL
requires on the order of hundreds of lines. The pipeline pragma
directs the tool to construct a hardware pipeline that can start ex-
ecuting one invocation of the function every clock cycle. Vivado
automatically inserts a suitable number of registers to achieve the
desired clock period. The Par and Gen arrays are mapped on BRAMs
by default. The pipeline would need MAX_H values from each array
per clock cycle although a dual-port BRAM can supply only 2 val-
ues. A solution is to divide the data over multiple BRAMs that can
be accessed simultaneously. We accomplish that for Gen with the
ARRAY_PARTITION pragma. To Par, we applied the ARRAY_RESHAPE
pragma to combine all array elements into a single wide word.

1 void Enc (char Dat , char Par [MAX_H] , in t Pkt , in t h) {
2 #pragma HLS ARRAY_RESHAPE v a r i a b l e =Par comple te
3 s t a t i c char Gen [MAX_H] [MAX_K] = { . . . } ;
4 #pragma HLS ARRAY_PARTITION v a r i a b l e =Gen comple te dim=0

In-network computing to the rescue of faulty links NetCompute’18, August 2018, Budapest, Hungary

Client Server

Encoding Switch Decoding Switch

Faulty Link

Encoder
Model

Faulty Link
Model

Decoder
Model

From norm
al l

inksFrom fa
ulty

link

To fa
ulty

link

To norm
al l

inksL2
Forwarding

modelingSwitch.p4

Figure 7: Topology of the 10 Gb/s testbed for real-time TCP
benchmarks, using P4 to model FEC and faulty links.

5 #pragma HLS p i p e l i n e
6 for (in t i = 0 ; i < MAX_H; i ++)
7 Par [i] = i >= h ? Par [i] :
8 GF_add (Par [i] , GF_mul (Dat , Gen [i] [Pkt])) ;
9 }

Listing 1: Matrix-Vector Multiplier

5 EVALUATION
We evaluated Wharf with microbenchmarks and simulation.

5.1 Wharf Models
5.1.1 Line Rate P4 Model. To measure the effect of faulty links

and Wharf at the protocol and application level, we developed a P4
pipeline for the Barefoot Tofino that models the behavior of faulty
links and FEC in real-time. Figure 7 illustrates the pipeline.

The encodermodel adds theWharf header to packets egressing
on the faulty link and generates blank parity packets.

The faulty link model adds a corruption header to each packet
egressing the faulty link, indicating whether the next switch should
consider the packet lost. It uses the Tofino’s random number gener-
ator to select packets for loss according to a binomial distribution.

Finally, the decoder model processes packets ingressing from
the faulty link. It removes added headers and passes non-corrupt
packets to forwarding. It withholds corrupt packets, using recircula-
tion, until the block ends. If it has counted at leastK data plus parity
packets in the block, the model "recovers" the corrupt packets by
allowing them to pass to forwarding; else, the model drops them.

We deployed the model in the testbed network shown in Figure 7
and ran 10-second TCP file transfers from the client to the server
using Iperf with different settings for k , h, and loss rate.

Figure 8 shows TCP throughput with different FEC configura-
tions as loss rate varied. With Wharf, Iperf sustained over 5 Gb/s
with loss up to 10−1 (1 out of every 10 packets dropped). Without
Wharf, Iperf’s throughput at that loss rate was under 25 Mb/s.

Figure 9 shows average congestion window size (cwnd) in the
trials. Random packet loss at rates higher than 10−5 caused TCP to
reduce cwnd significantly, resulting in the throughput drop in Fig-
ure 8.With FEC, cwnd remains high as loss rate increases, especially
when using high levels of redundancy, e.g., (k,h) = (5, 5).

Figure 10 shows end-to-end network latency. Latency increased
with h/k because of the dynamics between the FEC model and TCP.
The TCP source under-estimated its contribution to congestion

because it was unaware of congestion related drops of parity pack-
ets. This caused high average queue depths in the egress to the
faulty link, e.g., up to 1 MB for (5, 5), and therefore high latency.
A solution that requires no modification to TCP is rate limiting
entry to the encoder based on the effective capacity of the faulty
link, given h, k and the loss rate. This would drop data packets
before parity packet generation to ensure that TCP senders are
aware of all drops relating to their flows. We tested our hypothesis
by repeating the (5, 5) trials with the sending host limited to 4.5
Gb/s, just under effective capacity. The average latency was 41 µs,
within the same range as latency in the no FEC trials. We plan to
integrate rate limiting into the next versions of Wharf and the P4
models, using the metering features of P4.

5.1.2 Event-based simulation. We customized a fat-tree datacen-
ter topology in ns-3 [13] to model (i) a link with loss characteristics
as described by Zhuo et al. [15]; and (ii) FEC to support transport
protocols. In this model we experimented with end-to-end error
correction rather than at the link-layer, to simulate a more complex
implementation without incurring the burden of implementing it
fully.

We simulated a 128-node fat-tree network with 10Gbps links
where two nodes communicate over TCP to transfer a 10MB file
at 2Gbps. We found that using (5, 1) FEC completely eliminated
retransmissions (which consisted of 152, 23, and 2 packets for loss
rates of 10−3, 10−4, and 10−5 respectively). But achieving end-to-
end reliability over a lossy link with little sacrifice to latency came
at a steep end-to-end overhead of 20%. The approach described in
this paper only adds overhead on lossy links, rather than across
paths that contain a lossy link.

5.2 Encoder Microbenchmarks
We measured the performance of our current encoder implementa-
tion. Packets in a single flow with uniformly-distributed payload
sizes of 64–1450 bytes are supplied to the FPGA with the packet
generator of DPDK 17.08.1. The encoder processes the packet with
parametersk = 50 andh = 1. At the output, wemeasured a through-
put of 9.3 Gbps over a 10-minute period, nearly saturating the
10-Gbps link.

For comparison, we also evaluated a reference CPU implemen-
tation, not optimized for performance. In the same deployment,
its throughput measured 227Mbps on a single core, and 1399Mbps
using all 8 physical cores of our Xeon E5-2450L running at 1.8 GHz.

5.3 FPGA resource consumption
Table 1 shows the resource requirements for the FPGA implemen-
tations of Wharf with different k and h parameters. The resource
requirements are post-implementation utilization values reported
by Xilinx Vivado. We observe that varying k has a negligible ef-
fect on resource consumption, whereas BRAM consumption has a
strong dependence on h. We believe that the BRAM consumption
can be further reduced because several arrays were overpartitioned.

6 CONCLUSION
In this paper we described Wharf, a new in-network mitigation
against failing network links. It monitors network ports to infer
abnormal loss, and uses forward error-correction across lossy links.

NetCompute’18, August 2018, Budapest, Hungary H. Giesen et al.

10−5 10−4 10−3 10−2 10−1

Error Rate (Percent of packets Lost)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(G

b/
s)

No FEC
(25, 1)
(25, 5)

(25, 10)
(10, 5)
(5, 5)

Figure 8: Iperf throughput.

10−5 10−4 10−3 10−2 10−1

Error Rate (Percent of packets Lost)

101

102

103

C
on

ge
st

io
n

W
in

do
w

S
iz

e
(K

B
)

No FEC
(25, 1)
(25, 5)

(25, 10)
(10, 5)
(5, 5)

Figure 9: Iperf TCP window sizes.

No FEC (25, 1) (25, 5) (25, 10) (10, 5) (5, 5)
(K, H)

0

200

400

600

800

La
te

nc
y

(u
s)

Figure 10: Latency at error rate=0.
Boxes and whiskers show quartile and
1.5*quartile ranges.

(k, h) (25, 1) (25, 5) (25, 10) (50, 1)

BRAM (18Kb) 130 (7%) 183 (10%) 248 (14%) 130 (7%)
Flip-flop 49019 (9%) 49291 (9%) 49781 (9%) 49019 (9%)
LUT 29909 (11%) 30758 (11%) 31851 (12%) 29919 (11%)

Table 1: Resource requirements of different configurations
of Wharf on the ZU9EG FPGA. BRAMs are local memories,
and LUTs (lookup tables) are programmable gates.

We prototyped the FEC encoding and decoding stages on x86 sys-
tems for ease of development and also prototyped the encoding
stage to run on reconfigurable hardware.

Our implementation is a work in progress, and we are extending
it to carry out the decoding stage on reconfigurable hardware, too.
Another improvement consists of using all the network ports on our
development board and scaling up our testing to use all available
bandwidth. Finally, we will add the configuration and coordination
logic to specify traffic classes and the parameters to the FEC.

We also plan to extend this work further to explore autonomous
network resource management, going beyond in-network mitiga-
tion of faulty links. We will explore in-network services that require
a level of programmability that exceeds P4’s current capabilities,
such as data deduplication and compression and build on the system
described in this paper.

Acknowledgements
We thank Isaac Pedisich for programming support. This material
is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contracts No. HR001117C0047
and No. HR0011-16-C-0056, and NSF grant CNS-1513679. Xilinx
provided tools and IP.

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-aware Load Balancing for Datacenters. SIGCOMM Comput. Commun.
Rev. 44, 4 (Aug. 2014), 503–514. https://doi.org/10.1145/2740070.2626316

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[3] The Working Group for WLAN Standards. 1997. IEEE 802.11TM WIRELESS
LOCAL AREA NETWORKS. (1997). http://www.ieee802.org/11/ Accessed 8th
March 2018.

[4] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2011. VL2: A Scalable and Flexible Data Center Network. Commun.
ACM 54, 3 (March 2011), 95–104. https://doi.org/10.1145/1897852.1897877

[5] ITU-T. 1996. X.25 : Interface between Data Terminal Equipment (DTE) and
Data Circuit-terminating Equipment (DCE) for terminals operating in the packet
mode and connected to public data networks by dedicated circuit. (Oct. 1996).
https://www.itu.int/rec/T-REC-X.25-199610-I/

[6] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Kra-
sic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff
Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman
Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and
Zhongyi Shi. 2017. The QUIC Transport Protocol: Design and Internet-Scale
Deployment. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 183–196.
https://doi.org/10.1145/3098822.3098842

[7] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
137–152. https://doi.org/10.1145/3132747.3132756

[8] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and
David Gelernter. 2014. Traffic Engineering with Forward Fault Correction. SIG-
COMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 527–538. https://doi.org/10.
1145/2740070.2626314

[9] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. 2011. Improving Datacenter Performance and
Robustness with Multipath TCP. SIGCOMM Comput. Commun. Rev. 41, 4 (Aug.
2011), 266–277. https://doi.org/10.1145/2043164.2018467

[10] Irving Reed and Gustave Solomon. 1960. Polynomial codes over certain finite
fields. Journal of the Society of Industrial and Applied Mathematics 8, 2 (06/1960
1960), 300–304. http://www.jstor.org/pss/2098968

[11] J. H. Saltzer, D. P. Reed, and D. D. Clark. 1984. End-to-end arguments in system
design. ACM Transactions on Computer Systems 2 (1984), 277–288.

[12] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Hong Liu, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2016. Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Datacenter Network.
Commun. ACM 59, 9 (Aug. 2016), 88–97. https://doi.org/10.1145/2975159

[13] D. Wong, K.T. Seow, C.H. Foh, and R. Kanagavelu. 2013. Towards Reproducible
Performance Studies of Datacenter NetworkArchitectures UsingAnOpen-Source
Simulation Approach. In Proceedings of the IEEE Global Communications Confer-
ence (GLOBECOM’13).

[14] Louis Woods, Jens Teubner, and Gustavo Alonso. 2010. Complex Event Detection
at Wire Speed with FPGAs. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 660–669.
https://doi.org/10.14778/1920841.1920926

[15] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind
Krishnamurthy, and Thomas Anderson. 2017. Understanding and Mitigating
Packet Corruption in Data Center Networks. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’17). ACM,
New York, NY, USA, 362–375. https://doi.org/10.1145/3098822.3098849

https://doi.org/10.1145/2740070.2626316
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
http://www.ieee802.org/11/
https://doi.org/10.1145/1897852.1897877
https://www.itu.int/rec/T-REC-X.25-199610-I/
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/2740070.2626314
https://doi.org/10.1145/2740070.2626314
https://doi.org/10.1145/2043164.2018467
http://www.jstor.org/pss/2098968
https://doi.org/10.1145/2975159
https://doi.org/10.14778/1920841.1920926
https://doi.org/10.1145/3098822.3098849

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Traffic classification
	3.2 Link-failure management policy
	3.3 Execution

	4 Implementation
	4.1 Overview
	4.2 Header processing
	4.3 FEC Encoder

	5 Evaluation
	5.1 Wharf Models
	5.2 Encoder Microbenchmarks
	5.3 FPGA resource consumption

	6 Conclusion
	References

