
Flightplan: Dataplane Disaggregation and Placement for P4 Programs

Nik Sultana John Sonchack Hans Giesen Isaac Pedisich Zhaoyang Han
Nishanth Shyamkumar Shivani Burad André DeHon Boon Thau Loo

University of Pennsylvania

Abstract
Today’s dataplane programming approach maps a whole P4
program to a single dataplane target, limiting a P4 program’s
performance and functionality to what a single target can of-
fer. Disaggregating a single P4 program into subprograms
that execute across different dataplanes can improve perfor-
mance, utilization and cost. But doing this manually is tedious,
error-prone and must be repeated as topologies or hardware
resources change.

We propose Flightplan: a target-agnostic, programming
toolchain that helps with splitting a P4 program into a set
of cooperating P4 programs and maps them to run as a dis-
tributed system formed of several, possibly heterogeneous,
dataplanes. Flightplan can exploit features offered by differ-
ent hardware targets and assists with configuring, testing, and
handing-over between dataplanes executing the distributed
dataplane program.

We evaluate Flightplan on a suite of in-network functions
and measure the effects of P4 program splitting in testbed
experiments involving programmable switches, FPGAs, and
x86 servers. We show that Flightplan can rapidly navigate
a complex space of splits and placements to optimize band-
width, energy consumption, device heterogeneity and latency
while preserving the P4 program’s behavior.

1 Introduction
Different kinds of hardware can be leveraged to make net-
works programmable, including CPU-based servers running
“software-ized” Network Functions (NFs), NPUs, FPGAs and
programmable ASICs. Although these hardware targets have
complementary strengths when it comes to performance, flex-
ibility, and power utilization, it is difficult to combine their
strengths. Many NFV frameworks are CPU-centric, and chain-
ing services across diverse hardware usually treat the hard-
ware’s capabilities as a black box. This is partly because
toolchains for NPUs, FPGAs, and ASICs are alien to most
software developers.

Code, documentation, tests and data can be downloaded from:
https://flightplan.cis.upenn.edu

Logical
Disaggregation

Dataplane program

A

CB

D E

Network
controller

Linkage
1

Physical mapping2

3
A

A

B
D

C

E

E
B CServer

Switch

FPGA

Figure 1: In this illustration, a program is split into 5 logical
parts, A-E. À A program is annotated with logical delimiters,
manually or automatically. Flightplan splits the program into
complementary parts using these annotations and provides
coordination and linkage code between these parts, which the
Flightplan control program configures at runtime. Á Each part
of the original program is mapped to a physical device. In this
illustration, A is mapped to Top-of-Rack (ToR) switches, B, C
D, and E to network-attached FPGAs, and redundant instances
of B, C, and E are mapped to execute on server CPUs. Â The
Flightplan control program can alter the program’s linkage at
runtime, to use different hardware targets, mitigate faults, or
balance load.

While P4 is emerging as a common language for program-
ming dataplanes across programmable ASICs, NPUs, FPGAs,
and CPUs, P4 programs are limited to what can be run on a
single target because they are programmed in an approach that
maps a whole program to a single dataplane. This approach
limits a dataplane program to what can be computed using a
single target’s resources and capabilities.

Through testbed experiments we measured how splitting
a single P4 program into subprograms that execute across
different dataplanes can improve performance, utilization and
cost (§2, §7.2.3).

In principle, one could write a set of P4 programs that
execute jointly across different dataplanes, combining their
strengths. Further, P4 could be used as a convenient syntax for
both NF authoring and for NF composition across different
types of hardware. This set of P4 programs would be written

https://flightplan.cis.upenn.edu

to follow this pattern:
• If the dataplane program exceeds the resources provided

by a single hardware target, then part of the program
could be disaggregated to run on additional targets.

• If the dataplane program exceeds the capabilities pro-
vided by a class of targets, it could be disaggregated to
run on two or more heterogeneous targets (e.g., ASIC
and FPGA).

• Redundant spares can be provisioned for quick fail-over,
leveraging the best available hardware for a given data-
plane program.

However, writing distributed P4 programs manually is te-
dious and error prone. Current dataplane programming ap-
proaches lack abstractions for inter-program communication
and mechanisms such as RPC [5] across different in-network
functions. This complicates the implementation and com-
position of sophisticated in-network services because data-
plane programmers are burdened with having to write and
manage such coordination explicitly. It is also laborious to
re-distribute the P4 program when new equipment or NFs
become available.

We propose and evaluate Flightplan, a target-agnostic, P4-
based programming toolchain that disaggregates P4 dataplane
programs into a set of dataplane subprograms and runs them
as a distributed system formed of several, possibly heteroge-
neous, dataplanes. It uses hardware performance and resource
profiles to plan the allocation of subprograms onto dataplanes
in the network on which to execute. The composite behavior
of the resulting distributed dataplane program is the same as
the original program; coordination and synchronization code
is provided by the Flightplan runtime.

We reduce the P4 program, hardware performance profiles,
and network topology constraints to a common rule-based
formalism that Flightplan uses to map parts of the original
program to dataplanes in the network. Through evaluation
we show that it rapidly navigates a complex space of con-
figurations which are then ranked according to the sought
optimization criteria, and show that several disaggregated pro-
grams can be run simultaneously in the same network.

Figure 1 sketches our approach. It uses unmodified, com-
modity hardware and does not require changing the P4
language. A key enabler of this approach is that P4 en-
joys toolchain support to target diverse hardware: ASIC [3],
FPGA [23, 37, 38], NPU [24], and CPU [25]. These diverse
targets’ toolchains are based on P4’s reference compiler [26],
which we extend in our prototype. Unlike traditional NF ser-
vice chaining [28], Flightplan works over diverse hardware.

We summarize our key contributions as follows:
• Dataplane program disaggregation. (§2) We propose

the concept of dataplane program disaggregation and
provide a motivating use-case. We show how disaggre-
gation enables better utilization of existing resources.

FEC-
encoded?

Memcached
query/reply?

Forwarding lookup

Query/Update
Cache

Lossy
egress? FEC encode

FEC decode
Emit

Y

N

Y

N

Y

Compressed
header? DecompressY

N Overloaded
egress link? Compress headerY

N

N

Figure 2: Our example dataplane program, Crosspod.p4,
shown as a flowchart for compactness. The colored dashed
rectangles surround functions that one might need to offload
to other dataplanes in the network to free up resources on the
switch, or because they exceed the computational abilities of
the switch.

• Automation for disaggregation. (§3) We present a
novel approach that partly automates dataplane disaggre-
gation and does not require changes to the P4 language
or to hardware targets and their toolchains. We extend
the open-source P4 compiler to implement a program an-
alyzer (§4) that discovers resource-use and dependencies
that must be preserved once the program is split.

• Flightplan runtime support. (§5) We describe the re-
quirement of in-dataplane and out-of-dataplane runtime
support for disaggregated programs and how the runtime
influences the process through which programs are disag-
gregated. We explore the design space by implementing
3 runtimes for Flightplan, offering different trade-offs
between features and overhead.

• Flightplan planner. (§6) We implemented a prototype
tool that generates configuration plans for disaggregated
programs.

• Evaluation. (§7) We present a detailed evaluation of
different aspects of this work, including testbed ex-
periments involving heterogeneous hardware and mi-
crobenchmarks to measure resource transfer and disag-
gregation overhead.

2 Motivating Example: Crosspod
Crosspod.p4 is an 800-line P4 program, sketched in Fig. 2,
that will provide a running use-case. After describing how
Crosspod.p4 works, we describe the process of disaggre-
gating it into several subprograms to run on three different
classes of hardware.

We wrote Crosspod.p4 to improve network reliability and
performance using caching, compression, and forward-error
correction in a way that is transparent to applications and
users. Figure 3 shows its execution. Figure 4 shows two ex-
amples of disaggregation for this program.

GET

KV serverFEC decode +
KV cache

Header decompress
Header compress +
monitor link health

GET

KV client KV cache +
FEC encode

1

2

3

4

5
6 7

Figure 3: À Key-Value (Memcached) client generates a GET
request (yellow packet) which it puts onto the network for
the KV server to respond to. Á A transparent, rack-level in-
network KV cache is consulted. Â In the event of a cache miss
then the request is relayed onwards. The switch compresses
its header, and upon detecting that the request shall cross a
lossy link, it activates link-layer FEC which is computed in
the network using reconfigurable hardware. Ã The KV packet
and FEC-related redundancy (pink packet) cross the channel
to the next switch. Ä Lost packets can be recovered during
FEC decoding. Å The packet’s header is decompressed. A
second inline KV can be consulted, to take pressure off the
host-based KV server. Æ If all the caches were missed, then
the request finally reaches the KV server, which sends its
response back to the requesting client.

In-network functions. Crosspod.p4 invokes a set of in-
network functions to achieve its goal. Some of these functions
are external to P4, and we implemented them to run on dif-
ferent types of hardware. In our example dataplane program,
reliability is improved by (1) using forward-error correction
(FEC) to mitigate faulty links; (2) application-specific caching
to lessen congestion; and (3) header compression to lessen
congestion. The performance of the network is improved
by (1) reducing link utilization (through caching and header
compression), (2) reducing latency (through caching closer to
clients), and (3) reducing server utilization (through caching).
In particular, caching is directed at Key-Value (KV) queries,
a staple service in modern datacenter systems [10, 18, 21, 35].

Why Dataplane Disaggregation. In this example dataplane
program, we combine in-network functions that cannot en-
tirely be carried out within a single type of hardware for the
following reasons: (1) resources: we cannot run the program
entirely on a programmable switch ASIC because some of the
functions (e.g., layer 2 FEC) exceed the computations that can
be carried out in state-of-the-art devices, which typically do
not include payload processing; (2) performance: we cannot
run it entirely on an FPGA because this would severely con-
strain the throughput of this program. ASICs often support
higher I/O bandwidth per chip and use less silicon for the
standard dataplane switching operations, resulting in fewer
or less expensive chips to handle the highest throughput data

FEC-
encoded?

etc

Emit: continue
from “A”

Y

N

Compressed
header? Decompress

Y

N

Continue
from “A”?

Y

N

Drop

FEC decode

Continue
from “B”?

Y

N

Emit: continue
from “B”

Continue
from “A”? Y

N

Drop

FEC decode

Memcached
query/reply?

Query/Update
CacheY

N

Compressed
header? Decompress

Y

N

Emit: continue
from “B”

FEC-
encoded?

Memcached
query/reply?

Forwarding lookup

Query/Update
Cache

N

Y

N

Y

N

Compressed
header? DecompressY

N

Emit: continue
from “A”

Continue
from “B”?

Y

etc

Scenario 1

Scenario 2

Device A
Device B

Device A

Device B

Figure 4: Two ways of splitting the program from Figure 2
between two devices: in Scenario 1 a single function is of-
floaded from the switch (Device A) to an FPGA board (Device
B) that immediately returns control back to the switch after
executing the function; in Scenario 2 a segment of the dat-
aplane program is offloaded from the switch to the FPGA,
which carries out several functions.

movement; (3) expense: even if we could place a program
entirely on a single hardware dataplane, we do not want to
use up resources unnecessarily and would prefer to move
less-traversed code to a less expensive dataplane (e.g., an end-
host). Conversely, if we have underutilized FPGAs, then we
might prefer to use them rather than an end-host to save on
power and cooling costs [14]. Last, (4) availability: we might
want to failover quickly and autonomously from centralized
monitoring and reconfiguration, by installing logic into the
dataplane for self-management.

Why Automate Dataplane Disaggregation? Disaggregat-
ing a program involves i) deciding how to split it, ii) adapting
the derivative subprograms to hand-over to one another, and
iii) placing the subprograms on targets in the network.

Table 1 shows different characteristics of different hard-
ware targets when executing the same function on the same
workload. Automation spares the network operator from hav-
ing to manually pick hardware combinations and track their

Throughput (Gbit/s)
Power (W)

Compression FEC KV Cache
P.ASIC 9.07 - - 110.5
FPGA 8.35 7.95 7.73 27.3

CPU 0.10 0.04 - 140.6

Table 1: Maximum Throughput and Average Power of net-
work functions running on different hardware. Dashes indi-
cate that we do not have implementations for network function
to run on a particular target.

utilization.1 In addition to power and performance, Flightplan
can optimize for unit cost, utilization and latency.

The difficulty of this task is compounded by the likelihood
that the choice of programs, topologies and target devices will
change over time, requiring the whole process to be redone.
If several programs are being disaggregated, then it becomes
more challenging to optimize their placement jointly. Further,
placement constraints and objectives may change over time,
too: changing priorities over which links to protect with re-
dundancy for example, or which traffic to compress, might
require different function placements in the network.

This practical difficulty makes a strong case for automat-
ing dataplane disaggregation. But automation needs to be
done carefully to avoid incurring the theoretical complex-
ity of the automatic disaggregation problem. We estimate
this to be exponential in the number of targets available on
which to map subprograms and doubly exponential in the
number of subprograms.2 Flightplan uses heuristics to avoid
this blow-up and our prototype also emits coarsening advice
to opportunistically decrease the split granularity to better
utilize the available hardware.

Deployment practicalities. The design and evaluation of
Flightplan addresses the following practical considerations:
(i) Multiple disaggregated programs can be used in the same
network simultaneously: our evaluation in §7 describes how
we ran 10 P4 programs in the same network, 6 of which were
disaggregated, and of which 4 were different disaggregations
of the same program. (ii) Upgrades can be done in a phased
manner, as standard in deployment [34], by running the old
and new versions of software simultaneously in the same
network as described above. (iii) Debugging is done using
standard techniques—inspecting packet traces, counters, etc.—
complemented by using the Flightplan control program (§5)
to conveniently query Flightplan-specific state of the disag-
gregated program across all the dataplanes on which parts of
it are running. (iv) Failures can be detected and handled by
Flightplan runtime support inserted into the dataplane itself
or by remotely using the control program.

1More detailed information is provided in Table 3 in Appendix B.
2The full calculation is given in Appendix C.

3 Flightplan Overview

Flightplan produces a sequence of plans, consisting of a dis-
aggregation of a dataplane program into multiple programs,
and the allocation of these programs to dataplanes in the net-
work. A plan targets the Flightplan runtime which provides
the facilities to configure, start, and execute the disaggregated
program. The role and design of Flightplan’s runtime support
is detailed in §5.

In this section, we outline all the inputs and outputs of
Flightplan before going into more detail in the sections that
follow. Figure 5 illustrates our workflow. À We start with
a P4 program and segment it. Segments are sequences of
statements from the original program and provide the planner
with the smallest granularity of program parts that it can then
map to different targets. Figure 5 shows the program being
decomposed into five segments as an example, labeled A-E.
The then and else blocks of an if statement can go into
separate segments, as hinted in the drawing in Figure 5 where
segment A branches to B and C.

Programs are currently segmented manually, but this could
be automated in the future. Segmentation consists of insert-
ing additional lines in the program that are interpreted spe-
cially by our extension of the P4 compiler to delimit segment
boundaries (§4.1.1). Á Our P4 compiler extension analyzes
segments to generate a set of Prolog-like rules that expresses
an abstract program completely automatically (§4.1.2). The
abstract program consists of a DAG of segments, with P4 code
replaced by the abstracted resources it depends on. Abstracted
resources, such as tables and external functions, might not
be available on all hardware or might have different capacity,
power, throughput, and latency characteristics when invoked
on hardware.

Â The abstract resource semantics is an additional set of
rules used to check whether a dataplane satisfies a segment’s
resource needs. We use these rules to encode the performance
profile which was summarized in Table 1. The contents and
generation of rules is explained further in §4.

Ã The planner is provided with a description of the net-
work, including topology and device information, expressed
in the same formal language used for our abstract semantics,
and Ä objectives to optimize, consisting of variables changed
by the abstract resource rules—such as Rate in Rule 1. Å If
the constraints can be satisfied for the given topology, abstract
resource rules and segmented program, then the planner will
lazily and exhaustively generate all plans to optimize objec-
tives. A plan consists of three components. The allocation
model describes how the abstract state—such as packet size
and latency—is modelled to change as the program executes
across dataplanes. This is used to understand the allocation
that the planner has found. The annotated program consists
of the original program with possibly coarsened segments,
reflecting how the segments are going to be split into subpro-
grams. In this example, segments B and C are united into F

A F F D
F E

D E

Segmented
program

A D
D E+ + +

Control program
profile

A

CB

D E

Dataplane
program

Segment
1

Abstract
Resource
Semantics

3

Planner

Network Description
4 5

Segment mapping

6 Plan

Allocation model

Planning
Objectives

8

9

Annotated
program

A

CB

D E

F
F

7
Split

Abstract
Program

2

Figure 5: Flightplan’s workflow, described in §3.

CPU Rate < 2×108

PacketSize > 1000
header_compress


Lat. 7→ Lat.+7.4×10−3

Rate 7→ Rate× 189.9
194.75

once Power 7→ Power+150W
once Cost 7→ Cost+5


Rule 1: This rule states that we can execute Header Compres-
sion (HC) on packets if we are running on a CPU, and the
throughput and packet size are within given bounds. We form
different rules to describe the same function operating under
different bounds—e.g., different Rate or PacketSize—and on
different hardware targets, such as our FPGA implementation.
If this rule can be used then the effect of executing HC in
this instance is shown in the [. . .]-enclosed finite function on
user-defined R-valued variables. In addition to adding latency
(Lat.), the function reduces Rate because of its compression
of network traffic. ‘once’ indicates that a function is only
executed once whenever using a specific target—in this case
using an x86 server raises power estimate by 150 W regard-
less of how many segments are allocated to that particular
target. ‘Cost’ is a normalized unit cost we use for different
types of devices on our network. The [. . .]-enclosed function
is allowed to mutate the planner’s representation of the pro-
gram’s state, modelling the effect of invoking the resource.

for mapping to the same dataplane. Finally, the control pro-
gram profile will be used by Flightplan’s control program to
configure the distributed program’s runtime, start it, and query
its state. The profile contains port, state information, and seg-
ment information, and is specific to a disaggregated dataplane
program. Æ The annotated program is split into subprograms.
This process involves augmenting each segment with a copy
of the Flightplan runtime to configure, test, and hand-over
between these programs. Some dataplane functions may be
external to the P4 program, such as the FEC from the previous
section. Flightplan treats such functions as black boxes, and
it does not generate non-P4 code for specific targets, such
as FPGAs or CPUs. Ç The program segments are compiled
using the target-specific toolchain provided by the target’s
vendor. È The control program configures the Flightplan run-
time of each target on which a segment is allocated by linking
the segments together: i.e., indicating on which port to hand-
over to its peer segments. Once the system’s configuration is
complete, the control program can start its execution.

Listing 1: Snippet from Crosspod.p4 (§2) showing an exam-
ple segmentation. Highlights show segmentation annotations
in orange and resource-related syntax in green.
1 bit <1> compressed_link = 0;
2 bit <1> run_fec_egress = 0;
3 ...
4 flyto(Compress);
5 // If heading out on a multiplexed link, then header compress.
6 egress_compression.apply(meta.egress_spec , compressed_link);
7 if (compressed_link == 1) {
8 header_compress(forward);
9 if (forward == 0) {

10 drop();
11 return;
12 }
13 }
14 flyto(FEC_Encode);
15 check_run_FEC_egress.apply();
16 // If heading out on a lossy link, then FEC encode.
17 if (run_fec_egress == 1) {
18 ...
19 classification.apply(hdr, proto_and_port); // Sets hdr.fec.isValid()
20 if (hdr.fec.isValid()) {
21 encoder_params.apply(hdr.fec.traffic_class , k, h);
22 update_fec_state(hdr.fec.traffic_class , k, h,
23 hdr.fec.block_index , hdr.fec.packet_index);
24 hdr.fec.orig_ethertype = hdr.eth.type;
25 FEC_ENCODE(hdr.fec, k, h);
26 ...

4 Rules in Flightplan

Rules of different kinds play a central role in Flightplan. These
rules are combined to describe the abstract semantics of a P4
program and how the resources it needs to use are satisfied
by hardware targets in a network.

Steps Á, Â and Ã in Figure 5 involve producing rules for
the planner to use. This section describes the content of these
rules and how they are generated.

An important design feature in Flightplan is that rules do
not have to be encoded literally by users. As explained in
this section, rules are either created automatically from P4
programs by the Flightplan analyzer, or are generated from
a table that describes the network and profiles of devices in
the network. This input is then automatically converted into
rules based on Definite Horn clauses [9] that rely on a simple
propositional language that is explained further in §I.

4.1 Abstract Program

Our P4 program analyzer turns a P4 program into an abstract
form consisting of a set of Prolog-like rules. To better describe
the generation of rules for step Á we first elaborate on step À.

4.1.1 Program Segmentation

Step À involves adding demarcating statements to P4 code.
These statements consist of calls to the special function
‘flyto()’, passing it a unique name to be used for the new
segment. A segment extends until the next flyto() or the con-
trol block’s end, whichever is reached first. flyto() statements
have no effect in P4, they are interpreted by our P4 com-
piler extension which we refer to as the Flightplan analyzer.
These statements provide syntactic markers that define the
sub-program granularity for the rest of the planning process.
Enclosing the whole program in a single segment is a degen-
erate segmentation that will require the planner to place the
program entirely on a single dataplane for execution while
satisfying all other constraints.

The snippet in Listing 1 shows three segments beginning
at lines 4, 14, and implicitly at line 1. The first segment is
named FlightStart by default.

Segmentation is done manually by the programmer or auto-
matically by a tool. In our prototype the programmer manually
segments the code, and subsequently the planner will merge
contiguous segments if they are to be placed on the same
dataplane.

Once a segmentation has been made, the Flightplan ana-
lyzer discovers data-dependencies through static analysis of
P4 code and determines whether a segment break is allowed
for the intended runtime. Flightplan runtimes will be detailed
in a later section.

4.1.2 Program Abstraction

For a given segmentation we next generate rules in step Á.
We devised a framework for abstract semantics for P4 that
is focused on resource dependence. Each segment is reduced
to the resources it needs to execute, and everything else is
abstracted away. In Listing 1 such resource-related syntax is
highlighted in green.

The Flightplan analyzer is a P4 compiler extension that car-
ries out static analysis of P4 code to gather which resources
are relied upon by each segment. Resources include invoca-
tion of external functions and table lookups. The analyzer
then automatically generates a Prolog-like [36] set of rules
for that segment. We call the collection of segments’ rules
the abstract program (§4.1) derived from the original P4 pro-
gram. The abstract program is emitted into a JSON file that
the analyzer parses; users do not need to write, inspect, or
change the contents of this file.

One rule is generated for each segment and describes the
resources used along each path through that segment.

Rule 2 describes the third segment from Listing 1 (Lines 4-
13). In this case there are three paths through the segment:
lines (5-7,13), (5-9,12,13), (5-13), and Rule 2 is showing the
path whose requirements subsume those of other paths. The
analyzer emits the resource requirements of each path, and

egress_compression header_compress drop
Compress

[Id]

Rule 2: Program segments are abstracted into rules showing
resource dependence. This rule states that segment Compress
can be mapped if the target dataplane can provide implemen-
tations of egress_compression, header_compress and drop:
these are satisfied by means of other rules that are provided
at input. We saw a rule for header_compress in Rule 1. Id is
the identify function: using this rule does not mutate abstract
state.

CPU Rate < 8×107

PacketSize > 1050
fec_decode


Lat. 7→ Lat.+0.09×10−3

Rate 7→ Rate× 64.47
77.36

once Power 7→ Power+150W
once Cost 7→ Cost+5


Rule 3: Abstract resource rule for running fec_decode on a
CPU.

the planner (§6) checks these are satisfied before allocating
that segment to a prospective execution target.

4.2 Abstract Resource Semantics
In step Â we supply the semantics of each program-used
resource, such as calls to external functions, in terms of the
measurable costs incurred for a program to use that resource
on a specific hardware target. Such costs include latency,
throughput, power, and the cost of the hardware.

In our prototype, the user encodes this information as a
table of CSV entries, and can reuse this information across all
invocations of Flightplan. A script then turns this table into
a JSON encoding of the rules that are used by the planner.
The measurements in these entries are derived empirically
using the workflow described in §J. This involves carrying
out profiling experiments that measure the characteristics of
using resources on different hardware targets.

Rule 3 shows the characteristics of applying our FEC de-
coding function on a CPU. Rule 4 in §I shows a rule for
applying Header Compression on an FPGA. Compared with
Rule 1 it supports much higher throughput over smaller pack-
ets. Our table can be refined to include more details about
the specific CPU and FPGA parts that were used, and capture
other information about the target or the workload, without
changing our general approach.

4.3 Network Representation
In step Ã, the last set of rules states facts about the topology,
the devices it comprises, and their ports. For example, that
the proposition “CPU” holds on a specific network element,
or the bandwidth limit of a specific port.

For a given port π, we gather facts in a set called πProvides.
We also associate constraints with π that must be satisfied for
π to be crossed. We call this set πRequires. 3

3Examples of π properties are given in §I.

In our prototype we use JSON to encode the network’s
topology and the capabilities of each device and port. We
reuse this information across all our invocations of Flightplan,
and it only need to be changed when the network hardware or
topology change.

5 Flightplan Runtime Support
A disaggregated program cannot function without runtime
support. At the very least, the runtime provides the gluing
code to link different parts of the disaggregated programs
together for the computation to flow through them as it would
in the original program.

The choice of runtime needs to be made first since it influ-
ences the rest of the process. This choice is communicated to
the analyzer and splitter (§6.4). In Flightplan, the following
information is in scope for the runtime to manage: (1) runtime
metadata, such as (1a) which part of the program needs to be
executed next, (1b) values of live variables to be preserved
across dataplane hand-overs, (1c) state related to in-dataplane
failure detection and handling, and (2) switch metadata—such
as ingress and egress ports, since these might be read or writ-
ten during the program’s execution, including table lookups
and actions.

There are different choices of runtime features and ways of
implementing them. Our different runtime implementations
show how the core idea in Flightplan—that of programmable-
dataplane disaggregation—spans a design space and not a
single implementation.

5.1 Runtime Design
Runtime support for Flightplan consists of two components,
the first running outside the dataplane and the second run-
ning inside it. The first is a control program that configures
the latter and queries its state. Configuration information is
stored in register values and table entries used by the sec-
ond component to support the execution of each segment
of the distributed P4 program. In our prototype, the control
program—called fpctl—emits dozens of commands to the
P4 controller, which in turn interacts with the dataplane. The
inputs to fpctl consist of the network topology, the con-
trol program profile, and a command (such as configure or
start) and its parameters.

The second component runs inside the dataplane and must
be written in P4. It is combined with each constituent of
a distributed P4 program. In Fig. 1, each constituent A-E
would be instantiating the same runtime, albeit in possibly
heterogeneous dataplanes.

5.2 Runtime Diversity
We developed three runtimes, each representing a different
point in a design space. The three are called ‘Full’ (§5.3),
‘Headerless (IPv4)’, and ‘Headerless’. We use fpctl to inter-
act with all of them. All our implementations use standard fea-

tures of P416 and target the simple_switch BMv2 target [25],
whose features intersect with most P4 devices.

The Full runtime uses a special Flightplan header, but the
other two do not. Our IPv4 headerless approach steals bits
from the IPv4 Fragment Offset header for Flightplan state.
However, we found that this was not always usable since not
all of our network traffic has IP headers—specifically the
FEC parity frames lack these. This spurred us to develop a
completely headerless approach, described in §5.4.

Recalling the example from Listing 1, the Full runtime
allows us to preserve the value of meta.egress_spec by se-
rializing it into the Flightplan header during hand-over. We
can alternatively use the Headerless runtime since, while pre-
serving switch metadata such as meta.egress_spec is gen-
erally not possible in our Headerless approach, we encode
this information in the wiring and table entries. This limits
the behavior of the original program, trading off flexibility
for less overhead, since the Headerless approach essentially
creates a circuit through dataplanes.

For a further example of how the Full runtime allows more
flexibility for segmentation, we could add a flyto() between
lines 6 and 7 in Listing 1. The Full runtime allows us to
hand-over the value of compressed_link from Compress to
the new segment, but the Headerless runtime would not be
able to support this segmentation.

5.3 Full Runtime
The Full runtime provides the most flexibility and resilience
among our runtimes. It uses a custom header to accommodate
all of the features (1a-c,2) listed earlier in §5. The header’s
definition is provided in §D.

The header consists of two kinds of fields: scratch space
in which metadata and program variables are serialized and
state fields for encoding status flags and values, such as which
segment from the original program is to be executed next.

Part of the distributed program might be unreachable be-
cause of network or node failures, thus compromising the
overall program’s execution. This runtime implements a feed-
back loop between connected dataplanes to push fault detec-
tion and handling into the dataplane. The details are in §E.1.
fpctl can be used to query the runtime’s state, for instance

to find out if it is close to meeting a fail-over threshold, or if
it has failed-over. It can also overwrite this state and force a
fail-over remotely.

5.4 Headerless Runtime
This approach does not encode any state about the ongoing
computation across dataplanes. Consequently this runtime
provides less flexibility than the ‘Full’ approach: metadata
is not preserved, it does not support in-dataplane failure de-
tection and handling, and values of live variables are not
preserved—thus segments must be coarser to avoid needing
to hand-over the variables’ values. This runtime is described
further in §E.2.

X1 X3

F1 F3

H1 X2 X4

F2 F4Hn

J1

Jn

LS1 S2

(a) Shortest path from H1 to J1.

X1 X3

F1 F3

H1 X2 X4

F2 F4Hn

J1

Jn

LS1 S2

(b) A detour path from H1 to J1.

Figure 6: Abstract network used for running example in §6.

To compensate for the lack of header, we rely on the ingress
and egress port information. An interesting consequence of
the Headerless approach’s feature-paucity is that it can be
made to work with older SDN switches that are not P4 pro-
grammable. To enable this, fpctl generates flow-table con-
figurations from the control program profile. We report on the
use of non-P4 SDN switches in our testbed evaluation.

6 Flightplanner
Flightplan combines graph-based and formal methods to find
execution plans for disaggregated programs over dataplanes
in the network.

Execution of the disaggregated program occurs along paths
in the network, and therefore the planner needs to be told
about the network’s topology and hardware capabilities. Fig. 6
resembles our physical testbed and is used in this section
to help explain an execution plan. In this network, Si are
switches, Fi are network-connected FPGA boards, Xi are CPU-
based network elements that can run P4 programs, and Hi and
Ji are servers to which P4 programs cannot be offloaded.

Flightplan explores resources around switches to carry out
detours in the forwarding along dataplanes onto which some
of the computation can be offloaded as shown in Fig. 6b. In
this example S1 offloads computations to F1 and X3, and S2
offloads to F2.

6.1 Abstract Program State
The planner maintains a small amount of state as it explores
plans. This state consists of values for a special set of vari-
ables V that appear in rules, such as PacketSize and Rate.
Using these variables we form Bound expressions such as
PacketSize > 1000 from Rule 1.4

The abstract program state θ consists of a total map V →R
that encodes the value of each V at one instant during the
program’s execution. The values of V can be transformed by
rules in their [. . .]-function, while the values of propositions
can only be derived through proof, as will be explained shortly.
During the planner’s execution, all Bound expressions are
ground, making the evaluation process straightforward.

6.2 Proof-based Segment Allocation
Producing a plan involves two kinds of inference: (i) deciding
whether a given dataplane can execute a given segment in

4Further details of our modeling language are in §I.

R2
R5
θ,πProv. CPU

egress_compres. R1

θ,πProv.
CPU Rate < 2×108

PacketSize > 1000
header_compress R6

θ,πProv. CPU
drop

Compress

Proof 1: Flightplan may allocate segment Compress to π only
if a proof can be derived using θ, program+resource+network
rules and πProvides.

a way that satisfies all related constraints; and (ii) finding
a plan—a sequence of dataplanes over which all of a pro-
gram’s segments are executed. This section describes how
item (i) is done in Flightplan. The next section builds on this
to describe (ii).

For a given port π (§4.3), to decide whether a segment Seg
can be mapped to π’s dataplane, we need to do two things.
First, ensure that all of π’s constraints are satisfied. For exam-
ple, the current transmission rate must not exceed the ports
limit. Second, we use facts provided by π to ensure that Seg
is derivable from the rules we have available. For example,
all external functions called in Seg must have viable imple-
mentations once they cross that port.

This derivation involves building a Prolog-style formal
proof. For example, if πProvides = {CPU} then Compress is
derivable as shown in Proof 1 if θ satisfies the bound-related
constraints of the rules used in this derivation.

In addition to obtaining assurance that a target can execute
a segment, we use proofs to compute the transformations
of abstract program state. This involves composing the [. . .]-
enclosed functions by doing a post-order traversal of the proof
tree, then applying this function to the search state θ to obtain
the new search state. For Proof 1 the state transformation γ is
γ = γR2 ◦ γR6 ◦ γR1 ◦ γR5

6.3 Plan-finding
Given a DAG of abstract program segments (§4.1) we search
for a succession of dataplanes that packets can be made to
traverse such that all program segments can be executed over
those packets. Since devices in the same class are identical,
we factor the solution space by the different device classes
to avoid returning quasi-duplicate solutions. The user can
choose whether they want the best solution—by having the
tool explore all possibilities. Alternatively, they are given the
solution found using a simple greedy heuristic on optimization
objectives—for example, by choosing the next dataplane that
least increases latency.

The network operator needs to provide three additional
pieces of information: (i) an initial abstract program state
θ0 (§6.1), (ii) the switch on which the disaggregation pro-
gram’s execution will be centered (e.g., S1 in Fig. 6), and
(iii) the set of devices to which the switch may offload to (e.g.,
{F1,F3,X1,X3} in Fig. 6).

The planner carries out a breadth-first search while attempt-

ing to allocate segments as described in the previous section.
At each hop it updates the abstract state using γ to compute
an approximation of resource-usage across the network. This
will be used to evaluate constraints in the rest of the potential
plan.

When a plan is found, it is converted into the three outputs
shown in Figure 5. First, contiguous segments that are to be
mapped to the same target are unified into larger, coarser-
grained segments. Second, the allocation model is produced
by emitting the trace of abstract program states and the map-
ping from segment names to targets in the network. Finally,
a profile is produced for use by fpctl—Flightplan’s control
program—to configure, start, and query the disaggregated P4
program. A profile consists of a mapping of generated P4
programs to a subset of the network. Flightplan uses the pro-
file to configure a dataplane target through the target-specific
control plane interface.

6.4 Program Splitting
Next we generate a separate, well-formed and self-contained
P4 file for each segment. The program splitting phase per-
forms three tasks: 1) extract the P4 code from each segment,
forming subprograms; 2) analyze the subprograms to gather
runtime-related context, such as variables whose values must
be included in the hand-over between dataplanes; 3) inject
runtime-dependent code for handing-over between subpro-
grams. These are described further in §K. The Flightplan ana-
lyzer prototype also emits split programs satisfying points 1
and 2. The interfacing to the runtime can be automated in the
future.

7 Evaluation
We evaluate Flightplan using virtual and physical networks to
answer various questions about its features and the implica-
tions of disaggregation choices.

7.1 Scale, Overhead and Disaggregation
We use a virtualized network (§7.1.1) to test logical qualities
of a Flightplan deployment, using P4 applications both that
we wrote and from third-party sources.

To add realism to our experiments, we implemented a gener-
ator for complete configurations of fat-tree networks [1] to run
on our setup, which is built on Mininet [19] and BMv2 [25].
We used k = 4 in this evaluation.

We implemented routing logic for this topology in a
P4 program called ALV.p4. It provides a baseline P4
program that implements minimal functionality in the
network—routing. We embedded it in four other P4 programs:
(i) Crosspod.p4 (§2), (ii) firewall.p4, (iii) qos.p4 and
(iv) basic_tunnel.p4. The latter three are third-party open-
source programs from the P4 tutorial repository [27].

Initially our virtual network had ALV.p4 executing on all
switches. We then installed the other P4 programs on some

p0e0

p0a0

p0e1

p0a1

c0

p1a0 p1a1

p1e1

c1

p1e0

Runtimes Functions/features
ALV.p4

firewall.p4

KV cache

Header compress/decompress

FEC encode/decode

p0h0 p1h0

Full

Headerless

Figure 7: Part of our fat-tree network showing core
routers (cN) and pods (pN[a,e,h]M) containing aggregation
and edge switches, and hosts. Configured as explained in §7.1.
Yellow arrows show which (sub)programs are installed on
each device. Links between devices are shown in grey, except
for links traversed by packets flowing between p0h0 and p1h0,
which are shown in black. Dotted lines show faulty links.

switches and disaggregated them in various ways and to use
different Flightplan runtimes, as described next. All disaggre-
gated P4 programs, including those of third-party programs,
were tested for behavioral correctness by checking that they
produced similar results as the original programs.

7.1.1 Flightplan deployment example

Fig. 7 shows part of our network and the variety
of P4 programs we ran simultaneously on different
switches in the same network. Switches p0a1 (ALV.p4),
p0e1 (firewall.p4), p0e0 and p1a0 (both Crosspod.p4)
run non-disaggregated P4 programs, while all other switches
run disaggregated programs. Of the latter, c0 and c1 use the
headerless Flightplan runtime, and the remainder use the Full
runtime.

Switches that run disaggregated programs are shown with
an adjacent box in Fig. 7 showing the supporting devices
on which parts of the original program were executed. For
example, p1a1 carries out some of its table lookups locally,
while others are offloaded to an associated device. Different
switches can have different numbers of associated devices
over which a dataplane program can be disaggregated—for

example, c0 has 2 while c1 has 5. The presence and resourcing
of such devices is decided by the network operator. In this part
of the evaluation we treat all such devices as being identical,
but in the next section we distinguish between heterogeneous
devices based on their resources and capabilities.

We also disaggregated qos.p4 and basic_tunnel.p4 and
tested performance overhead in our Mininet-based setup. We
found that the lower-bound overhead to client-perceived RTT
was 8.2%. A more accurate measurement using a hardware-
based experiment, but on a simpler topology, is given in §L.1.

7.1.2 Network Scalability and Operation

The network from Fig. 7 helps demonstrate two features.
First, it shows how the use of Flightplan scales with net-
work size. Since we constrain Flightplan’s planning scope to
only resources adjacent to a switch—as illustrated in Fig. 1—
Flightplan’s scalability is independent of network size in this
network topology. Thus planning can scale to a network con-
taining a large number of switches.

Second, it shows that different Flightplan runtimes and dis-
aggregations can operate simultaneously in the same network,
and that these can be configured and started independently of
each other, to deliver the practical features described at the
end of §2.

7.1.3 Overheads

We compare program-level overheads of dataplane disaggre-
gations. These include overheads on: the network due to
header inclusion, port count, data memory (total register bits,
number of tables and their entries) and code memory (code
from the runtime, and extra branching because of splitting).
Device-level overheads—such as those on throughput and
power—are evaluated in §7.2 based on testbed experiments.

Table 2 shows overheads for two sets of disaggregations of
Crosspod.p4: one set using the Full runtime and the other
using Headerless. In our prototype, the in-network programs
do not respond to MTU path discovery, therefore to use the
Full approach in general we needed to lower the MTU size to
provide headroom for the Flightplan header. This uniformly
reduces network capacity by 2.4% to create enough head-
room.

Program-level overhead can be calculated before compila-
tion, independent of toolchain. The general analysis of both
runtimes’ overheads is provided in §F. If a P4 program is
split to run across several P4 devices, we can calculate the
overhead introduced onto the network and the devices inde-
pendently of the devices’ toolchains.

7.2 Testbed Evaluation
We use a physical testbed deployment to measure device-
level resource and performance impact of Flightplan-based

Memcached
Client

iperf3
Client

EdgeCore
Wedge	
(Tofino)

Pipeline
1

Pipeline
2

KV
Cache

FEC
Decoder

Memcached
Server

iperf3
ServerLoopback

Xilinx	
ZCU102
FPGAs

Tofino	Header
Compressor

Tofino	Header
Decompressor

FPGA Header
Compressor

FPGA Header
Decompressor

FEC
Encoder

NF Server 2
(CPU Header Decompressor)

NF Server 1
(CPU Header Compressor)

Figure 8: Evaluation testbed

disaggregation. This evaluation is based on the Headerless ap-
proach, which gives us a lower-bound on overhead among our
runtime approaches. Using Crosspod.p4 (§2), we: (i) eval-
uate the Flightplan planner, and (ii) measure the end-to-end
performance and power consumption of a heterogeneous dat-
aplane running Flightplan-generated splits of Crosspod.p4.

7.2.1 Experimental setup.

Fig. 8 illustrates our testbed. It contains an EdgeCore Wedge
3.2-Tbps switch with a two-pipeline Barefoot Tofino P4 ASIC,
five 4×10-Gbps Xilinx ZCU102 FPGA boards each with one
Xilinx XCZU9EG FPGA, four traffic generation servers with
8-core Intel Xeon 2450 CPUs, and two network function
servers with 10-core Intel Xeon Silver 4114 CPUs. In our
configuration, the Tofino pipelines act as two independent
switches, S1 and S2, that service different ports and each
have their own dedicated resources (SRAM, TCAM, etc.). All
packets between S1 and S2 traverse a physical 10-GbE cable.
We also evaluate a legacy scenario, by swapping the Wedge
for an Arista 7050-QX32 with a Broadcom Trident II ASIC
and OpenFlow support.

Crosspod.p4 plans. Our benchmarks focus on three plans
output by Flightplan, designed for different objectives.
• “Maximum Performance” optimizes end-to-end per-

formance by placing each function on the fastest avail-
able platform, i.e., header compression on the Tofino and
all other functions on FPGAs.
• “Resource Saver” offloads compression from the

Tofino to the FPGA to save compute and memory re-
sources.
• “Legacy Extender” uses the Trident II in place of the

Tofino to achieve functional equivalence with an Open-
Flow switch.

Measurements. We benchmark four axes of performance:
throughput, packet loss, latency, and power consumption.
Throughput is measured at the application layer, using ei-
ther iperf3 or DPDK-pktgen. We measure packet loss us-
ing the Tofino’s port counters. For latency, we use a simple
telemetry function for the Tofino that timestamps (nanosecond
precision) each packet ingressing or egressing out of moni-
tored ports and clones a digest to a collection server. Finally,

Feature Runtime=Full Runtime=Headerless
N

et
.

Header (b) 288 0
Ports [D] 1-2 [3] 1-5 [6] 2 [3] 5 [6]

Ex. in Fig. 7 p0a0 p1e0 c0 c1
Seg ID 0 1 2 0 1 2 3 4 5 0 1 2 0 1 2 3 4 5

D
at

ap
la

ne Tables 6 6 5 1 1 5 1
Entries (b) 179 89 89 445 89 154 22 22 230 22

Registers (b) 547 309 309 1261 309 4 4
Ctrl Struct 6 +2 +2 6 +2 2 +1 +1 2 +1

Externs 0 3 2 0 1 0 3 2 0 1

Table 2: Overheads incurred by different disaggregations of Crosspod.p4, organized into Network and Dataplane overheads.
The Externs row does not show overheads, but serves to show the distribution of extern function invocations across the splits. D
is the number of segments. Each segment is given a separate identifier in the Seg ID row to distinguish them in the rows below.
Ports is the number of switch ports that are required: the Full runtime’s use of a Flightplan header allows the use of a single port
(connecting to a single supporting device), while the Headerless runtime requires an exact number of ports. Entries gives the
total size of all Flightplan table entries, in bits. Ctrl Struct is a measure of code complexity of the transformed program, counting
the number of conditional statements introduced by the disaggregation in addition to the runtime’s code.

we measure power consumption of each device at the outlet,
polling at a 200ms interval.
End-to-end benchmarks. We use workloads that mix two
types of flows: 1) large TCP flows (iperf3) representing
traffic with high bandwidth demands and 2) UDP Memcached
request streams representing latency-sensitive traffic. This
workload models the bimodal distribution of packet sizes and
traffic patterns in datacenters [4, 32]. We measure throughput
using iperf3 and calculate latency as the difference between
the time at which a packet ingresses from its source host and
the time at which it egresses to its destination host.5

7.2.2 Flightplan Planner

We used the Flightplan planner to analyze the solution space
for Crosspod.p4. Our evaluation involves 239 rules, divided
as follows: 140 are profile rules including Rules 1, 3, and 4;
68 are network rules (including those in Fig. 17), and the rest
are program rules (including Rule 2).

The network is the one shown around c1 in Fig. 7. We used
this to explore program-segment mappings to the switch and
its supporting devices in such an arrangement. We ran dif-
ferent variants of the experiment to contrast the implications
of using different types of equipment, following the plans
described in §7.2.1.

Fig. 9 summarizes our results, and we evaluate the best-
performing plans on our physical testbed in the next section.
To avoid clutter we exclude “Resource Saver” because of its
hybrid nature between the other two categories, and instead
we show more extreme forms of “Legacy Extender” in the
“Server Offload” family. These rely on a single switch and a

5As well as the end-to-end experiments on Crosspod.p4, we also sepa-
rately evaluate its constituent in-network functions end-to-end in §A.

Figure 9: Best-rated plans found by Flightplan, described
in §7.2.2. In each dimension, less is better. Each dimension is
normalized by the maximum value from all plans. ‘RRate’ is
the inverse of the bandwidth of the distributed program. ‘Cost’
refers to hardware costs and excludes running costs, which are
captured by ‘Power’. ‘Area’ refers to FPGA-resource usage.

pool of CPU-based servers. The latency advantage of “Server
Offload (Tofino)” relative to “Server Offload (Arista)” seems
too optimistic, and we believe that might be because of a lack
of accuracy in the model we use.

7.2.3 Crosspod.p4 Benchmarks

The goal of Crosspod.p4 is to improve the performance of
applications bottlenecked by inter-rack links suffering from
congestion and partial failure [39]. We evaluate how Flight-
plan’s Crosspod.p4 plans achieve this goal in a network with
a 10 Gbps inter-rack link.

End-to-end performance. First, we evaluate the “Maxi-
mum Performance” Crosspod.p4 plan. Fig. 10 shows
application-level performance in a series of trials where the
network functions are activated one by one. The figure plots
the latency and success of GET and SET requests to the Mem-
cached KV store and the throughput of TCP iperf3 sessions,
on two client/server pairs, as illustrated in Fig. 8.

101

102

103
La

te
nc

y
(µ

s)

95

100

Su
cc

es
s

(%
)

0

5

10

Th
ro

ug
hp

ut
(G

bp
s)

Baseline +HC +Drop +FEC +KV100

150

Po
we

r
(W

)
KV GET KV SET iperf3

Figure 10: Throughput, latency and power utilization of a
disaggregated Crosspod.p4. In the top and bottom panels,
lower values are better. In other panels, higher values are
better. Boxes show data quartiles and whiskers show 10th and
90th percentile, aggregated over 5 repetitions.

The leftmost panel in Fig. 10, labeled Baseline, shows
application performance with no network functions enabled.
Here, the problem is congestion, caused by the iperf3 data
transfers that saturate the inter-rack link. Because of the con-
gestion, application-level Memcached latency is high.

To reduce the impact of congestion, we enable header com-
pression of the iperf3 traffic. This reduces the load on the
bottleneck inter-rack link, allowing queues to drain and thus
reducing latency. As the +HC column of Fig. 10 shows, header
compression reduces Memcached request latency by 97%
without impacting iperf3 throughput. Since Flightplan maps
the compression and decompression functions to the switch
pipelines, no new network devices are required for this addi-
tion, and power consumption does not noticeably increase.

To study FEC, we first model partial link failure by en-
abling a dropping function in the switch that drops 5% of
packets at random on the inter-rack link. The middle panel of
Fig. 10, labeled +Drop, demonstrates application-level effect:
a reduction in throughput to 1.19 Gbps and a loss of 5% of
Memcached packets. The FEC encoder and decoder FPGAs
are then introduced to protect TCP traffic on the link. It re-
stores 57% of the lost TCP throughput, as the +FEC phase of
Fig. 10 shows. Power consumption increases by about 55 W,
reflecting the addition of the two FPGAs.

Finally, we introduce the Key-Value (Memcached) cache
network function FPGA on the client side of the inter-rack
link. The +KV column shows that the approximate 60% cache
hit rate causes median latency of GET packets to reduce to 7 µs
(while leaving the upper quartile above 40 µs) and restores
successful responses to about 60% of previously dropped
requests. SET latency and success are unaffected because the
cache is inline, so these packets must traverse the shared link.
Power consumption increases by another 25 W due to the
addition of one more FPGA.

0

5

10

TC
P

Th
ro

ug
hp

ut
(G

bp
s)

0

100

200

Po
we

r
(W

)

0

20

40

KV
 L

at
en

cy
(µ

s)

Max. performance Resource saver Legacy extender

Figure 11: Application performance and network power con-
sumption for three different Crosspod.p4 plans. Bars mark
medians, whiskers 5th and 95th percentile.

Alternate plans. Next, we evaluate the viability of other
Flightplan-generated Crosspod.p4 plans. As Fig. 11 shows,
the Resource Saver and Legacy Extender provide almost
identical application-level benefits. All three plans improve
performance in the face of packet loss and congestion, in-
creasing TCP throughput from 1.19 Gbps to 6.25 Gbps and
decreasing median KV’s GET request latency to under 10 µs.

Although all three plans are viable from the application’s
perspective, they offer different benefits for network operators.
As Figure 11 shows, the power consumption of maximum
performance is 50 W lower than the alternatives because it
maps HC to the Tofino, thus requiring two fewer FPGAs.

On the other hand, by offloading HC to FPGAs, Resource
Saver frees compute and memory resources in the Tofino.
Most significantly, it reduces the number of pipeline stages
from 10 to 4, the utilization of stateful ALUs from 25% to
2%, the number of tables from 46 to 11, and the utilization of
SRAM by approximately 600KB per 1024 concurrent flows.

Finally, by targeting the Trident II, Legacy Extender
lets OpenFlow switches achieve similar functionality and
application-level performance as P4 switches. This provides
a path to deploying Crosspod.p4 in networks with limited
programmability [32] or at a lower budget.

8 Related Work
Compared to Active Networking [2,15,33] and related recent
work such as TPP [17], Flightplan leans towards performance
and safety at the expense of flexibility: computation allocated
to each dataplane is established at compile time, rather than
being packet-carried.

Automated approaches to software splitting [6, 13, 22, 30]
are usually done for vulnerability mitigation, whereas Flight-
plan is directed at improving performance and utilization.
Closer to Flightplan, Floem [29] focuses on CPU-NIC co-
processing of network applications, but Flightplan focuses on
packet processing across distributed dataplanes which do not
necessarily include CPUs.

As in network calculus [20] (NC) our reasoning technique
for plans is concerned with flows at steady-state. Flightplan al-
lows using arbitrary functions to describe the transformation γ

of each rule on the abstract state, not only NC’s operators. Fu-
ture work can improve the modeling precision of our approach
and generalize to better characterize workload-sensitive func-
tions such as the in-network cache.

Acknowledgments. We thank Heena Nagda, Rakesh Nagda,
our shepherd Nate Foster and the reviewers for their feed-
back. This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) un-
der Contracts No. HR0011-19-C-0106, HR0011-17-C-0047,
and HR0011-16-C-0056. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of DARPA.

References
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin

Vahdat. A Scalable, Commodity Data Center Network
Architecture. SIGCOMM Computer Communication
Review, 38(4):63–74, August 2008.

[2] D. Scott Alexander, Marianne Shaw, Scott M. Nettles,
and Jonathan M. Smith. Active Bridging. SIGCOMM
Computer Communication Review, 27(4):101–111, Oc-
tober 1997.

[3] Barefoot Networks. Barefoot Tofino. https://www.
barefootnetworks.com/technology/, 2016.

[4] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Understanding Data Center Traffic Char-
acteristics. In Proceedings of the 1st ACM Workshop on
Research on Enterprise Networking, WREN ’09, pages
65–72, New York, NY, USA, 2009. ACM.

[5] Andrew D. Birrell and Bruce Jay Nelson. Implement-
ing Remote Procedure Calls. ACM Transactions on
Computer Systems, 2(1):39–59, February 1984.

[6] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad
Karp. Wedge: Splitting Applications into Reduced-
privilege Compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 309–322, Berkeley,
CA, USA, 2008. USENIX Association.

[7] IOS Cisco. Quality of Service Solutions Configura-
tion Guide. Congestion Avoidance Overview. Cisco,
Accessed, 18, 2014.

[8] Carlos R Cunha, Azer Bestavros, and Mark E Crovella.
Characteristics of www client-based traces. Technical re-
port, Boston University Computer Science Department,
1995.

[9] William F. Dowling and Jean H. Gallier. Linear-time
algorithms for testing the satisfiability of propositional
horn formulae. The Journal of Logic Programming,
1(3):267 – 284, 1984.

[10] Facebook Inc. Introducing mcrouter: A memcached
protocol router for scaling memcached deployments.
https://bit.ly/2wDbLml, September 2014.

[11] D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. S.
Bakin, W. S. Marcus, and T. M. Raleigh. Protocol boost-
ers. IEEE Journal on Selected Areas in Communications,
16(3):437–444, September 2006.

[12] Hans Giesen, Lei Shi, John Sonchack, Anirudh Chel-
luri, Nishanth Prabhu, Nik Sultana, Latha Kant, An-
thony J McAuley, Alexander Poylisher, André DeHon,
and Boon Thau Loo. In-network Computing to the Res-
cue of Faulty Links. In Proceedings of the 2018 Morning
Workshop on In-Network Computing, NetCompute ’18,
pages 1–6, New York, NY, USA, 2018. ACM.

[13] Khilan Gudka, Robert N.M. Watson, Jonathan Ander-
son, David Chisnall, Brooks Davis, Ben Laurie, Ilias
Marinos, Peter G. Neumann, and Alex Richardson.
Clean Application Compartmentalization with SOAAP.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15,
pages 1016–1031, New York, NY, USA, 2015. ACM.

[14] Vishal Gupta, Ripal Nathuji, and Karsten Schwan. An
Analysis of Power Reduction in Datacenters Using Het-
erogeneous Chip Multiprocessors. SIGMETRICS Per-
formance Evaluation Review, 39(3):87–91, December
2011.

[15] Ilija Hadžić and Jonathan M. Smith. Balancing Perfor-
mance and Flexibility with Hardware Support for Net-
work Architectures. ACM Transactions on Computer
Systems, 21(4):375–411, November 2003.

[16] Van Jacobson. Compressing TCP/IP Headers for Low-
Speed Serial Links. RFC 1144, 1990.

[17] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong
Geng, Changhoon Kim, and David Mazières. Millions
of Little Minions: Using Packets for Low Latency Net-
work Programming and Visibility. SIGCOMM Com-
puter Communication Review, 44(4):3–14, August 2014.

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 121–136, New York, NY, USA, 2017. ACM.

[19] Bob Lantz, Brandon Heller, and Nick McKeown. A net-
work in a laptop: Rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, New
York, NY, USA, 2010. ACM.

[20] Jean-Yves Le Boudec and Patrick Thiran. Network
calculus: a theory of deterministic queuing systems for
the internet, volume 2050. Springer Science & Business
Media, 2001.

https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/
https://bit.ly/2wDbLml

[21] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 137–152, New York,
NY, USA, 2017. ACM.

[22] Shen Liu, Gang Tan, and Trent Jaeger. PtrSplit: Support-
ing General Pointers in Automatic Program Partitioning.
In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17,
pages 2359–2371, New York, NY, USA, 2017. ACM.

[23] Netcope Technologies. Netcope P4. https://www.
netcope.com/en/products/netcopep4, June 2017.

[24] Netronome Inc. Agilio CX SmartNICs. https://www.
netronome.com/products/agilio-cx/, 2016.

[25] P4 Language Consortium. P4 Behavioral Model. https:
//github.com/p4lang/behavioral-model, Novem-
ber 2018.

[26] P4 Language Consortium. P4 reference compiler.
https://github.com/p4lang/p4c, November 2018.

[27] p4lang/tutorials. p4lang/tutorials. https://github.
com/p4lang/tutorials.

[28] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. E2: A Framework for NFV Applications. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles, SOSP ’15, pages 121–136, New York,
NY, USA, 2015. ACM.

[29] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A Programming System for NIC-
Accelerated Network Applications. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 663–679, Carlsbad, CA,
2018. USENIX Association.

[30] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting Privilege Escalation. In Proceedings of the 12th
Conference on USENIX Security Symposium - Volume
12, SSYM’03, pages 16–16, Berkeley, CA, USA, 2003.
USENIX Association.

[31] A.B. Roach. A Negative Acknowledgement Mechanism
for Signaling Compression. RFC 4077, 2005.

[32] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (data-
center) network. SIGCOMM Computer Communication
Review, 45(4):123–137, August 2015.

[33] Beverly Schwartz, Alden W. Jackson, W. Timothy
Strayer, Wenyi Zhou, R. Dennis Rockwell, and Craig
Partridge. Smart Packets: Applying Active Networks to
Network Management. ACM Transactions on Computer
Systems, 18(1):67–88, February 2000.

[34] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Hong Liu, Jeff Provost, Jason Simmons, Eiichi
Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and
Amin Vahdat. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter
Network. Communications of the ACM, 59(9):88–97,
August 2016.

[35] Twitter Inc. Twemcache: Twitter Memcached. https:
//github.com/twitter/twemcache, June 2013.

[36] M. H. Van Emden and R. A. Kowalski. The Semantics
of Predicate Logic As a Programming Language. The
Journal of the ACM, 23(4):733–742, October 1976.

[37] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh
Lee, Vishal Shrivastav, Nate Foster, and Hakim Weath-
erspoon. P4FPGA: A Rapid Prototyping Framework for
P4. In Proceedings of the Symposium on SDN Research,
SOSR ’17, pages 122–135, New York, NY, USA, 2017.
ACM.

[38] Xilinx Inc. Xilinx SDNet. https://www.xilinx.
com/products/design-tools/software-zone/
sdnet.html, 2017.

[39] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and Mitigating Packet Corrup-
tion in Data Center Networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, pages 362–375, New
York, NY, USA, 2017. ACM.

A Individual Function Evaluation
To validate their effectiveness, we measured the performance
of individual in-network elementary functions—such as FEC,
Memcached caching, and header compression—in our physi-
cal testbed. These functions are instances of protocol boost-
ers [11].

A.1 Function 1: Forward-Error Correction
We developed a forward-error correction (FEC) link-layer net-
work function [12] on FPGA to mitigate against corrupting
links [39]. It introduces parity packets which are used down-
stream to recover corrupted packets. Our implementation uses
a block code, supplementing every block of k (data) packets

https://www.netcope.com/en/products/netcopep4
https://www.netcope.com/en/products/netcopep4
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c
https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials
https://github.com/twitter/twemcache
https://github.com/twitter/twemcache
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html

0 1000 2000
Rate (kReq/s)

102

103

La
te

nc
y

(µ
s)

Set Latency

0 1000 2000
Rate (kReq/s)

20

40

60

80

100

Su
cc

es
s (

%
)

Set Success

0 1000 2000
Rate (kReq/s)

101

102

103

La
te

nc
y

(µ
s)

Get Latency

0 1000 2000
Rate (kReq/s)

0

20

40

60

80

100

Su
cc

es
s (

%
)

Get Success

With KV cache No cache

Figure 12: Performance metrics for Memcached with and without the KV-cache function. Markers show median values, while
shaded regions show 5th and 95th percentiles. Success is measured as the percentage of responses received for every 500 requests.

0% .01% .1% 1% 2% 3% 4% 5% 10%
Drop rate

0

2

4

6

8

Th
ro

ug
hp

ut
 (G

bp
s) Baseline

FEC

Figure 13: Effect of FEC on
TCP throughput at varying
rates of link loss

0 10 20 30
Time (Seconds)

0

10

20

Q
ue

ue
D

ep
th

(K
B

)

No Compression Compression

Figure 14: Effect of header
compression on switch queue
occupation

with h parity packets. The parity allows the in-network func-
tion to reconstruct up to h packets per block. The parity pack-
ets are computed by an implementation of the Reed-Solomon
erasure code.

Forward-Error Correction reduces the need to retransmit
packets in TCP flows and helps TCP sustain larger congestion
windows across corrupting links. This is demonstrated by
Figure 13 for an experiment performed with iperf3 with
10 simultaneous TCP connections. Traffic was encoded with
k = 5 and h= 1. Each bar represents the median throughput of
10 experiments, each of which lasted 1 min. Error bars show
the minimum and maximum. For a packet drop rate of 5%,
we observe that FEC increases the throughput by almost 3×.
At 10% drop rate, throughput has all but vanished, but FEC
manages to recover 40% of the 10-Gbps link capacity.

A.2 Function 2: Key-Value cache

We implemented an inline Memcached cache on FPGA to
accelerate key-value queries. This improves the throughput,
success rate, and latency of a Memcached deployment. The
cache has the capacity to hold 1000 entries in its local hash
table.

It was benchmarked against a standard Memcached server
with default settings, including the use of four threads. Re-
quests consisted of 8-byte keys and 512-byte values. 90% of
requests sent were GET requests, while the remaining 10%

were SET requests. Keys were chosen randomly from 10,000
candidates according to a Zipf distribution with an exponent
of -1, consistent with measurements of document access fre-
quency on the Web [8]. This distribution of request keys
resulted in a cache hit-rate of around 50%.

Figure 12 shows the differential effects of the cache on
SET and GET requests. As SET requests must still reach the
Memcached server before they are acknowledged, the cache
has minimal effect on SET packets, resulting only from the
reduced load on the server. The inline cache keeps the median
latency of GET requests below 10 µs regardless of the request
rate. With the cache in place, approximately 50% less packets
are lost than without the cache, consistent with its 50% hit
rate.

A.3 Function 3: Header compression

We implemented an in-network function on the FPGA, Tofino
and CPU for lossless compression of packet headers between
neighboring switches. Our implementation is a simplified
version of Van Jacobson compression [16] and many fixed-
function implementations [7]. By compressing packets, bursts
occupy less buffer space. Fig. 14 shows this effect for a highly-
utilized (99%) network, as measured on the EdgeCore switch.
Lines show the median, and the shaded region the range, over
a rolling window of 100k samples.

B Single target micro-benchmarks

In addition to the end-to-end benchmarks of network func-
tions, each individual device was also evaluated with fixed-
rate packet replays using DPDK-pktgen.

Table 3 summarizes the maximum throughput and average
latency that each function achieves on the CPU and FPGA
targets.

Target Function Throughput Latency
(Mbit/s) (µs)

CPU HC Compress 95.2 (0.038) 5800 (33.9)
CPU HC Decompress 198.75 (1.5) 5900 (20)
FPGA HC Compress 8350 (150) 5.24 (0.005)
FPGA HC Decompress 8890 (17) 4.47 (0.002)
CPU FEC Encode 35 (0.23) 300 (1400)
CPU FEC Decode 64.47 (0.007) 90 (5.7)
FPGA FEC Decode 7950 (27) 32.8 (1.4)
FPGA FEC Encode 8130 (18) 4.75 (0.004)
FPGA KV Inline cache 7730 (230) 15.9 (6.7)

Table 3: Throughput and latency values from per-function
and per-target micro-benchmarks. Values shown are mean
and standard deviation.

C Complexity Analysis of Dataplane Disag-
gregation

In this section we calculate the number of ways to
split a program and allocate its splits to execute on
nodes in the network subject to certain constraints.
Starting with the number of ways to split a program,
we abstract this as the number of contiguous subse-
quences {(1, . . . ,k1),(k1 +1, . . . ,k2), . . .(. . . ,n)} of a se-
quence 1, . . . ,n that represents the lines of the program. There
are (n−1) ways to bisect the sequence 1, . . . ,n. Bisecting it
again—to yield three subsequences—presents (n−2) choices.
In the general case, the number of k-ary dissections of an n-
sequence (where k < n) is:

(n−1)× (n−2)× . . .× (n− k) =(
k

∏
i=1

(n− i)

)
∈ O

(
nk
)

(1)

Thus the number of ways to split a program grows exponen-
tially in the number of splits sought.

Turning now to growth relative to the topology. Placement
of subprograms occurs along a path between two hosts on the
network. For simplicity assume that there is a single shortest
path between the two, call it p. Let A(p) be the set of vertices
connected to p through a single edge, we call this the set
of adjacent nodes. Subprograms can be placed along p or
offloaded onto adjacent nodes drawn from A(p). Since we
are deriving an upper-bound, assume that each subprogram
can be placed on any of the elements in A(p) or placed on p.
Let |p| bet the length of path p, and |A(p)| be the cardinality
of set A(p). The set of placement choices is 2|p|+|A(p)|− 1,
discounting the choice where no placement is made on any
node. For a k-split program the number of placement choices
is
(2|p|+|A(p)|−1

k

)
=

k

∏
i=1

(
2|p|+|A(p)|+1− i

i

)
∈ O

((
2|p|+|A(p)|

)k
)

Since in this theoretical model the choices of splitting and

Listing 2: Flightplan header definition
1 #define SEGMENT_DESC_SIZE 4
2 #define SEQ_WIDTH 32
3 #define STATE 8
4
5 header Flightplan_h {
6 // Includes Ethernet header to simplify parsing, and handling by black-box

external functions that aren’t aware of the Flightplan header.
7 bit<48> dst;
8 bit<48> src;
9 bit<16> type;

10
11 bit<SEGMENT_DESC_SIZE > from_segment;
12 bit<SEGMENT_DESC_SIZE > to_segment;
13 bit<STATE > state;
14 bit<BYTE > byte1;
15 bit<BYTE > byte2;
16 bit<BYTE > byte3;
17 bit<BYTE > byte4;
18 bit<QUAD > quad1;
19 bit<QUAD > quad2;
20 bit<QUAD > quad3;
21 bit<SEQ_WIDTH > seqno;
22 }

placement are independent then, modulo the simplifying as-
sumptions, the space of disaggregation choices grows expo-
nentially with the number of targets available on which to map
subprograms, and doubly with the number of subprograms:

O
(

nk
(

2|p|+|A(p)|
)k
)

. �

D Flightplan header
Listing 2 shows the P4 definition of the header which Flight-
plan uses when sending packets between connected data-
planes.

E Runtime Implementations
This section elaborates on the description provided in §5
of our implemented Flightplan runtimes and their resource
overheads.

E.1 Full Runtime
This section expands the description given in §5.3.

To detect network distortion such as drops, reordering, and
duplication, our scheme includes a sequence number in the
Flightplan header. A corresponding amount of state is kept at
the sending and receiving dataplanes to determine whether the
sequence of packets has been interrupted. Negative acknowl-
edgment [31] is used for a downstream dataplane to signal
loss of synchronization with the upstream dataplane. Positive
acknowledgments are used by the upstream dataplane to poll
liveness of the downstream dataplane.

This mechanism sets up a feedback loop between con-
nected dataplanes. Our scheme is illustrated in Figure 15.
Using this scheme we push fault detection into the dataplane,
to react to faults in the network by triggering a relink or esca-
lating a notification.

Among our runtimes, Full provides the most flexibility
when splitting a program: control-flow can be stopped any-
where in the program and resumed later on a different dat-
aplane using context that was serialized into the Flightplan
header. Flightplan has no visibility into dependencies on state
that is controlled from outside the dataplane, such as extern

Q R

S=1;A=0

S=2;A=0

S=3;A=1

S=3;A=1

S=4;A=0

S=5;A=0

Q R
ACK=2
ECK=0
NAK=0
SEQ=1

Q R

NAK

SEQ=1

SEQ=0

SEQ=2

SEQ=3

SEQ=5

ACK=0
ECK=1
NAK=0
SEQ=3

ACK=2
ECK=0
NAK=0
SEQ=3

ACK=0
ECK=0
NAK=1
SEQ=5

12

3 4

5

6

7

8

Figure 15: À Synchronization state is initialized at down-
stream dataplanes. Á Synchronization state is initialized at
upstream dataplanes. Â Synchronization information is in-
cluded in the Flightplan header (shown in grey) that is added
to packets (shown as the blue square). Ã Sequence number
is incremented. Ä Periodically upstream dataplane will poll
downstream dataplane for activity, by raising the ACK bit in
the Flightplan header, and the ECK (Expecting ACK) locally.
Å ECK is reset when an ACK packet is received. Æ Packets
may be lost in either direction, leading to loss of synchroniza-
tion. Ç Loss of synchronization is eventually detected and
action is taken. Negative acknowledgment (NAK) seeks to
update the upstream dataplane.

function state and tables; those need to be synchronized ex-
ternally.

The runtime keeps track of the following sets of informa-
tion: N (the next dataplanes that a dataplane might transfer to),
P (previous such dataplanes), SN (which fail-over alternative
to use for each next-dataplane), and NF and PF (metadata for
failure detection and handling, such as sequence numbers and
whether an acknowledgement has been demanded).

On each dataplane on which part of the disaggregated pro-
gram is run, fpctl configures dataplanes to fail-over to use
other downstream dataplanes in the event of reaching a thresh-
old of received NAKs or missed ACKs. Both thresholds are
absolute values (not ratios, for instance) that are configured
by fpctl, which can also periodically poll the state of each
runtime to determine if it has seen an increase in failures.
Various actions can be taken depending on such an obser-
vation, for example: i) the threshold could be raised—again,
using fpctl—to buy time to understand the source of the
loss, ii) rate limits could be applied to applications using the
link, iii) the state and configuration of the downstream data-
plane can be inspected or reset, iv) regardless of whether the
cause has been understood or not, the ACK and NAK counts
could be reset periodically if they are no longer seen to incre-
ment regularly. These actions are not directly implemented in

Receive
Frame

Process
Ingress

Continue
Ingress
Process

Forward
Decision

Process
Egress

Continue
Egress
Process

Emit
1

2

3

4

5
6

Figure 16: Core logic of the Headerless runtime.

fpctl but they could be automated by the network operator
by using the functionality provided by fpctl.

If no further fail-overs are possible, then the dataplane shuts
down; in turn, upstream dataplanes will eventually fail-over
to use a different dataplane, if possible, when their threshold
is met.

E.2 Headerless Runtime

The Headerless approach works by building a circuit between
dataplanes. Compared to the Full approach, in which a pro-
gram can be split almost arbitrarily, Headerless provides less
flexibility.

A program is assumed to have three parts: the ingress
subprogram, the forwarding subprogram, and the egress sub-
program. The ingress or egress subprograms, or both, may be
empty. If non-empty, they are segmented for offloading into
supporting devices, which we call helper dataplanes.

Thus the HL runtime differentiates starkly between two
types of dataplanes: the switch, on which the forwarding sub-
program is kept, gets the HLS version of this runtime, while
the helpers get the much simpler HLH part. The HLH part of
the runtime receives offloads from HLS, performs a computa-
tion, and returns control back to HLH . Disaggregations using
HL have a single instance of HLS and potentially several of
HLH . The ingress and egress subprograms, if non-empty, are
executed on a dataplane running HLH .

Fig. 16 shows the core logic of this circuit, which takes
place on HLS. It reflects the three parts in which the pro-
gram is organized: first, one or more ingress subprogram seg-
ments (IN) are executed, after which a forwarding step is made
to determine whether to execute the egress segments (EN).
Upon arrival, if the ingress port is in I then transition 1 is
taken, else if the port is in IN then transition 2 is taken. Oth-
erwise a forwarding decision is made, and if the egress port
is in E then transition 4 is taken, or if the port is in EN then
transition 5 is taken; otherwise transition 6 is taken if the
program’s egress segment does not apply to the egress port.

A consequence of using the Headerless runtime is that
disaggregation must be coarser—only linear segments are
possible, not at DAG, and downstream live-variables must be
included in the same segment that updates the variables. As
a result, the complexity of segmenting is strictly lower than
the general case, as shown in §H. The suitability of using
Headerless runtime with a given segmentation is detected
statically using our P4 compiler extension.

F Runtime Overhead
Table 4 accounts for the overheads of each approach. The
overheads are described as functions over runtime-specific
parameters described in §E.

The constants in each function were derived by counting the
state used in each runtime, such as the width of registers, and
the width of entries from a table’s P4 specification. Further,
we counted the number of table entries resulting from typical
configuration of each runtime.

For example, the function N ·13 for HL(IPv4)’s total size
of entries (in bits) is derived from the number of entries N—
the number of next dataplanes that a segment might forward
to—which is known at compile time, multiplied by 13 which
consists of 9 bits for the port number and 4 bits for the segment
number. The state used by register arrays is the product of the
array size and the register size. For example, the term (NF +
PF) ·228 contributing to Full’s register overhead consists of
register arrays whose register sizes total 228 bits, one of which
is of size NF and the other PF . The parameters are described
in the previous section and in the table’s caption.

These overheads are not program-specific, but rather they
are additional to the program’s overheads. Also, these over-
heads are per-dataplane, not per-program. So if a dataplane
program is disaggregated into more subprograms then it will
incur more cumulative overhead, but the overhead’s factor
will depend on the runtime involved.

So for example if an L-line P4 program used R register bits
and T tables, whose entries occupied |T | bits, were disaggre-
gated into N subprograms, then if it were to use the Headerless
runtime, each subprogram S would be of size LS +70, where
L
N ≈ LS ≤ L is the subprogram’s line count. HLS would have
R+4 register bits, T +5 tables. Assuming that I = E = 1, and
that half of the N subprograms relates to the ingress segment
(and therefore the other half relates to the egress segment),
we have that IN = EN = N

2 , and therefore the memory needed
for table entries is

|T |+
(
22+ N·22

2 +22+ N·22
2 +10

)
= |T |+N ·22+54

bits. The overhead of HLH can be calculated similarly.

G Complexity Analysis of Headerless Disag-
gregation

Below we define the complexity function C of headerless
disaggregation, in terms of the number of possible choices that
can be made during this process. The asymptotic complexity
of disaggregating a program to use the Headerless runtime is

6In addition to the resources quantified in Table 4, the Full approach
also uses mirroring sessions to provide feedback. One session is used for
each upstream dataplane to which it needs to provide feedback. These are
configured automatically by fpctl.

7The header can be enlarged to afford more scratch space if further head-
room is made available from the interfaces’ MTU.

8We repurpose the Fragment Offset field instead of adding a header.

max(C(SI),C(SE)), where SI is the sequence of lines in the
ingress segment, and SE the sequence of lines in the egress
segment.

Let S be a sequence of lines of code, n = |S| be the number
of lines in S, and 1≤ B≤ n the arithmetical average, in lines
of code, of blocks in S. Top-level lines of code that do not
form part of a block are counted as blocks of length 1. The
number of blocks in S is 1≤ n

B ≤ n.
At the limit, each block will be mapped to a different seg-

ment. But there might be constraints that force us to merge
segments or objectives that are benefitted by such merges.
Let M ∈ N,0≤M ≤

(n
B −1

)
be the merge opportunity: i.e.,

the number of merges of (adjacent) segments we can carry
out to the maximally segmented program. Increasing M has
the effect of making segmentation coarser by merging more
blocks together. Blocks are merged to eliminate data-flow
dependencies between blocks since the Headerless runtime
does not allow context serialisation and transfer between data-
planes. Blocks are also merged to make better use of physical
resources; in our setup this merge decision is made by the
planner.

The value of C consists of the sum of merge choices for
each value of M, which by the binomial theorem simplifies to
an exponential function:

C(S) =

n
B−1

∑
M=0

(n
B −1

M

)
= 2

n
B−1 ∈ O

(
2

n
B

)
(2)

�

H Comparative complexity
In this section we show that for programs having more than
2 lines, our Headerless disaggregation (§G) presents fewer
choices than general disaggregation (§C).

We start by clarifying the number of choices presented
by general disaggregation. From Equation 1 in §C, the com-
plexity of general disaggregation is O

(
nk
)
. Recall that k < n.

Expanding for all possible values of k, which represents the
number of splits we may choose, we obtain:

O
(
n1 + · · ·+nn−1)⊆ O

(
nn−1)

From Equation 2, the complexity of Headerless disaggre-
gation is O

(
2

n
B

)
.

Assuming n > 2, our goal is to show O
(

2
n
B

)
⊂ O

(
nn−1

)
.

Recall that 1 ≤ B ≤ n, and note therefore that O
(

2
n
B

)
⊆

O (2n).
Without changing our assumption regarding n, we use the

transitivity of⊆ to reformulate our goal as O (2n)⊂O
(
nn−1

)
.

Take 2n and nn−1 as the bounding functions of the two classes
respectively. We show that 2n < nn−1 first through application

Runtime #LOC #Tables Entries(#bits) Registers(#bits) Header(#bits)

Full6 400 6 N ·SN ·17 + 2N ·36 + 2NF ·36 + 2PF ·40 71+(NF +PF) ·228+N ·10 2887

HL(IPv4) 75 1 N ·13 11 08

HL
{

HLS
HLH

70 5 I ·22 + IN ·22 + E ·22 + EN ·22 + 10 4 0
70 1 22 4 0

Table 4: Dataplane and network overheads for each runtime. In HL we differentiate between HLS and HLH : the switch dataplane
and the helper dataplanes. These overheads were calculated by counting the resources used by each runtime’s P4 implementation,
and they are inherited by every dataplane involved in running a disaggregated program that uses that particular runtime. N is the
number of next dataplanes that a dataplane might transfer to, P is the number of previous such dataplanes. SN ≥ 1 is the number
of fail-over states: if SN = 1 then there is no fail-over. NF ≤ N and PF ≤ P is the number of next and previous dataplanes for
which a feedback loop is configured. I and E are the number of ingress and egress ports for which a program is running, and
IN ≥ 0 and EN ≥ 0 are the number of intermediate hand-overs during the ingress and egress stages of the program.

of identities:

2n < nn−1

⇔ log2 (2
n)< log2 (n

n−1)
⇔ n log2 2 < (n−1) log2 n
⇔ n < (n−1) log2 n
⇔ 0 < (n−1) log2 n−n

Then by induction on n, using n = 3 for the base case, veri-
fying that 0 < 2 ·1.58−3, and then assuming the induction
hypothesis 0 < (n−1) log2 n−n to show 0 < n log2 (n+1)−
(n+1). We start with application of identities:

0 < n log2 (n+1)− (n+1)
⇔ 0 < n(log2 n+ log2

(n+1
n

)
)− (n+1)

⇔ 0 < n log2 n+n log2
(n+1

n

)
−n−1

⇔ 0 < log2 n+(n−1) log2 n+n log2
(n+1

n

)
−n−1

⇔ 1 < ((n−1) log2 n−n)+ log2 n+n log2
(n+1

n

)
Using the induction hypothesis we conclude that
((n−1) log2 n−n) > 0, and using the assumption that
n > 2 it follows that log2 n > 1 from the definition of log2,
and log2

(n+1
n

)
> 0 from the definition of log2 and since

n+1
n > 1. �

I Modelling Language
We use a simple formal language to describe relations be-
tween segments, computational resources and network re-
sources. The relations rely on symbols used to represent those
entities, such as “Compress”, “PacketSize”, and “FPGA”. We
require the user to declare these symbols by specifying a sig-
nature. A Flightplan signature consists of two finite sets:
propositions Prop and variables V .

Signatures can be reused, at least partly, by different pro-
grams on the same network, or by the same program being
deployed to different networks. Our P4 compiler extension
generates an initial signature together with the abstract pro-
grams and the initial resource rules. The user can then extend
and maintain this as needed.

FPGA Rate < 9.5×109

PacketSize > 100
header_compress



Lat. 7→ Lat.+6.44×10−6

Rate 7→ Rate× 9.15
9.3

〈LUTs〉 7→ LUTs+24.4%
〈BRAMs〉 7→ BRAMs+54.4%
〈FF〉 7→ FF+15.8%
once Power 7→ Power+30W
once Cost 7→ Cost+2


Rule 4: Running Header Compression on an FPGA. Angled
brackets indicate that the variables they reference depend on
the device—e.g., instead of updating the flip-flop (FF) count
for all FPGAs, we increment those of the FPGA to which HC
is mapped using this rule.

CPU
egress_compression

[Id]

Rule 5: Flightplan’s static analysis identifies
egress_compression as a resource, and specifically as
a table. We add a rule that allows this resource to be used on
a CPU-based target.

Resource-related syntax is mapped to distinct propositions
from Prop. We encountered the proposition header_compress

in Rule 1. That rule had another proposition, “CPU”, that is
external to the program but is used to qualify the semantic to
a specific hardware.

The variables in V are used to construct a second syntactic
category in our specification language called Bound. For each
v∈V and r∈R, the following are valid bounds: vopr for op∈
{=,<,>,≤,≥}. Rules 1 and 4 show examples of bounds
usage from our formalization.

Propositions and bounds are also used to express con-
straints of network hardware. The planner (§6) uses these
rules to explore implications of using those devices in plans.
Fig. 17 shows a subset of the rules used for the evalua-
tion described in §7.2.2, which model the network described
in §7.2.1.

CPU
drop

[Id]

Rule 6: Flightplan’s static analysis identifies drop as an ex-
ternal function. We add a rule that allows this to be called on
a CPU-based target.

edgecore-2 :
πRequires =

{
Rate≤ 1011

}
,

πProvides = {PSwitch}
arista-1 :

πRequires =
{

Rate≤ 4×1010
}
,

πProvides = {Switch}
ZCU102-5 :

πRequires =
{

Rate≤ 1010
}
,

πProvides = {FPGA}
Xeon2450-1 :

πRequires =
{

Rate≤ 1010
}
,

πProvides = {CPU}

Figure 17: A subset of the network-description rules used
for the evaluation described in §7.2.2. Unlike other rules we
have seen, these rules describe the constraints on using each
device and the features enabled by each device. The planner
uses this information when exploring the space of solutions.

J Generating rules from empirical profiles
Table 3 provided a summary of our profiling experiments.
This section describes how the profiling experiments were
done, and how their results were used to generate the profile-
related rules such as Rules 1, 3 and 4. Other types of rules are
derived from the program or from the network’s description
and are generated differently as described in §4.

J.1 Methodology
For each external function involved in a program, we mea-
sure its peformance characteristics on different classes of
devices and use this information to estimate the performance
of program segments in which those functions occur.

The performance profile is made by installing the function
on a member of each class on which it can run and running
a workload to sample the function’s performance. This is
used to create an entry in a table consisting of the following
columns:

(Function,PacketSize,Target,TimeArrive,TimeLeave,
RateArrive,RateLeave)

The first three columns consist of the function’s name, the
packet size used in the workload, the name of the hardware
target class. The next two columns consist of the timestamps
of when a frame is received by the function, and the processed
frame is sent by the device.9 Similarly, the last two columns

9Both timestamps were generated by the EdgeCore Wedge switch and

consist of the arrival rate to the function and the sending
rate. This captures the effect of the function on the link’s
capacity: for example FEC uses more of the downstream
capacity compared to upstream, while header compression
uses less.

Further, we also make two measurements that are less
function- and workload-dependent: Power consumed by the
target when executing the function on that workload, and the
Cost of the hardware target. Instead of literal equipment costs
we used relative quantities: {FPGA = 1,Switch = 2,CPU =
5,PSwitch = 10}.
Limitations on precision. This approach will not accurately
account for differences between devices in the same class—
e.g., different FPGA devices—or different configurations of
the same device—e.g., kernel bypass on CPU targets—but it
will give us good-enough characterization for our purposes,
and a starting point for more accurate characterizations. Like
all profiling, it is also sensitive to the workload used. Despite
this, our approach is amenable to refinement in the following
way: devices classes can be refined into subclasses, different
kinds of workloads can be distinguished by adding a vari-
able to each rule, and additional variables can be sampled by
measurements and added to the generated rules. For example,
the 〈· · · 〉 in Rule 4 involves an extension we made to more
accurately characterize the usage of FPGA resources. Since
the utilization of FPGA resources is a simple additive approx-
imation we do not constrain the planner by their values—for
instance to ensure that an FPGA’s LUTs are not exceeded—
but instead we do a post-hoc check.

Limitations on scale. To scale with the size of the network,
we avoid creating a profile for every target in the network.
Further, to scale with program and disaggregation diversity,
we avoid creating a profile for every segment. Instead we
focus on external functions, and measure their performance
characteristics on different classes of devices as described
above. In future work some of this characterization work can
be automated further, to improve both its scalability and its
precision.

J.2 Compiling the table
For each Function and Target we run a series of experiments
in which we gradually increase PacketSize and RateArrive. As
long as we do not notice any drops—which would indicate
that the function is not coping with the arrival rate for that
packet size—we create a table entry for the information de-
scribed above.

We then process the raw table to create a second table
consisting of the following columns, some of which overlap
with the first table we described:

(Function,PacketSize,Target,∆Latency,RateArrive,∆Rate,
Power,Cost)

were mirrored to a collection server on the side.

Function Rate <
(

RateArrive +TR

)
PacketSize >

(
PacketSize −TPS

)
Target


Latency 7→ Latency+ ∆Latency

Rate 7→ Rate× ∆Rate
once Power 7→ Power+ Power
once Cost 7→ Cost+ Cost



Rule 7: Template for performance-related rules. TR and TPS
are tolerance offsets for rate and packet-size respectively. We
set these to small values to retain fidelity while using the
inequality operators.

where

∆Latency = TimeLeave−TimeArrive

∆Rate = RateLeave
RateArrive

All the records from the first table are automatically pro-
cessed to create the second table. This is an example record
from which we will show how to generate Rule 1:

(header_compress,1000B,CPU,7.4×10−3s,2×108Gbps,
189.9

194.75 ,150W,5)

J.3 Converting table into rules
Finally, the table of measurements described above is con-
verted into rules. This is done automatically as follows: for
each row in the second table we instantiate the template shown
in Rule 7 by replacing the black-background fields in the rule
with the corresponding fields in the row. The meaning of these
rules is explained in the caption of Rule 1 in §3, and in §I.

That is how we generated the performance-related rules
used by our tools, including the following rules shown in this
paper: Rules 1, 3 and 4.

K Program Annotation & Splitting
After finding a mapping from segments to dataplanes as part
of a plan, contiguous segments that are mapped to the same
dataplane are grouped into a single segment. This is done by
deleting intermediate flyto() statements. At this point the
program is said to be annotated for splitting.

Next we need to generate a physical, well-formed and self-
contained P4 file for each segment. The program splitting
phase performs three tasks: 1) extract the P4 code from each
segment, forming subprograms; 2) analyze the subprograms
to gather runtime-related context, such as variables whose
values must be included in the hand-over between dataplanes;
3) inject runtime-dependent code for handing-over between
subprograms.

These tasks involve simple but laborious analysis and mod-
ification of data structures in the compiler, which we outline
in this section.
Subprogram generation Our implementation reuses the P4
compiler’s data structures as much as possible, adding a thin
layer to facilitate the analysis and transformation needed for

splitting. We follow these steps: 1) Analyze the program’s
abstract-syntax tree (AST) to identify all occurrences of calls
to flyto. 2) Generate a virtual AST (vAST) for each flyto.
A vAST is an overlay of the AST for each split. Thus we ob-
tain a single data structure using which we can simultaneously
reason about the original program and all derived programs.
3) Generate the segment-level topology: a graph where nodes
consist of segments and where an edge denotes a code-path
leading to the hand-over between adjacent segments.

Context gathering The synthesis of code between segments
to pass data across dataplanes involves computing the tran-
sitive closure of required state, to ensure that downstream
dataplanes shall have all the information they need to com-
pute on. Writing such interfacing code by hand is tedious
and error-prone. We continue the steps taken in the com-
piler extension: 4) Traverse each vAST to compute its set of
free variables (variables that are used, but not defined, in that
vAST); 5) Traverse the segment-level topology to compute
the extended scope of variables: that is, variables defined in
one vAST will need to be propagated to downstream vASTs
in which they are used.

Code injection, Flightplan header This task uses the infor-
mation gathered during the previous stage to ensure that the
hand-over will happen correctly between all connected sub-
programs: 6) If supported by the runtime, then generate stubs
to propagate two kinds of information across logical data-
planes: a) the values of extended-scope variables and b) addi-
tional Flightplan metadata for instrumented programs or fault
detection (§5). This is added to a special Flightplan header
that encapsulates the original packet, piggy-backing logisti-
cal metadata.10 7) Embed the vAST in the original program,
replacing the main control block. The downstream compiler
will purge unnecessary declarations and definitions. For each
vAST, we update the deparsing stage to use the stub for the
downstream logical dataplane. We also update the parser
block to opportunistically parse the Flightplan header, and,
if successful, then the control block branches to process the
continuation of Flightplan code.

L Disaggregation microbenchmarks

L.1 Latency Microbenchmarks
In this section, we measure the amount of latency added by
splitting a dataplane and benchmark the responsiveness of
Flightplan’s failover mechanisms.

End-to-end latency. We benchmark application layer end-
to-end latency by measuring round-trip time (RTT) between
two servers connected to switch S1 in the topology described
in §7.2.1. A concurrent ping and 10 iperf3 streams went
from the iperf3 client to the Memcached client, with the
forwarding table initially stored on S1 and offloaded to S2.
Fig. 18 shows the change in ping RTT distribution. Latency

10 The Flightplan header is described in Appendix D.

0 5 10 15 20
Ping round-trip time (μs)

0.00

0.25

0.50

0.75

1.00

CD
F

Baseline
Table Offload

Figure 18: Table-offload
overhead measured by pings
across end-hosts.

100 101 102

handover time (μs)

0.0

0.5

1.0

CD
F

Link Load (%)
30
50

70
90

Figure 19: Effect of network
load on handover latency.

100 101 102

handover time (μs)

0.0

0.5

1.0

CD
F Burst Size

4
8
16

32
64

Figure 20: Effect of bursti-
ness on handover latency.

11 12
background traffic rate (Gb/s)

101

104

107

av
er

ag
e

pa

ck
et

s l
os

t

No Failover
T = 1000

T = 100
T = 10

Figure 21: Thresholding (T)
of packet loss.

was higher because packets had to traverse two additional
queues in each direction. These queues were congested due
to iperf3, which adds latency as discussed in Sec. 7.2.3. In
this experiment we measured an 18.7% increase in average
RTT and 22.3% increase in maximum RTT in our setup, but
this increase will be smaller when the communicating servers
are separated by more hops, for example if they are not both
connected to S1.
Handover latency. To understand overhead at a finer scale,
we measure handover time, the time between the invocation of
the function containing the offloaded table and the beginning
of its execution. Fig. 19 shows the distribution of handover
time as link utilization varies. At a utilization level of 30%,
reflecting high load in a data center scenario [4], handover
time was under 1 µs for over 80% of the traffic. At higher rates,
handover time increases due to added congestion in the queues
between S1 and S2. As Fig. 20 shows, larger packet bursts
also have an effect, but only stretch the tail of the handover
time distribution. In a 50% load scenario, the handover time
remained under 1µs for over 60% of packets.

L.2 Failover Microbenchmarks
We evaluate two kinds of fail-over mechanisms. The first
involves controller-based failure-detection and effecting of
fail-over. The second involves in-dataplane failure-handling.

14.50 14.75 15.00 15.25 15.50 15.75 16.00
Time (s)

0

5

10

Pk
t L

os
s (

%
)

20ms poll
10ms poll
1ms poll

Figure 22: Packet loss during failover, as measured by iperf3.
At time 15 s, the FEC encoder fails and is automatically re-
placed by another FPGA. Polling for detection of the failed
link at tighter intervals results in less loss during the failover
procedure.

A deployment can involve both simultaneously, with the in-
dataplane mechanism reacting more quickly in most cases,
and the controller-based approach handling cases where the
in-dataplane mechanism is incapacitated because of device
failure.

Controller-directed failover. In the case of total failure of
a link or device, the loss of connection can be directly de-
tected by the controller, allowing it to automatically initiate
the failover procedure without further intervention.

Fig. 22 shows the packet loss rate of a UDP iperf3 ses-
sion running at 1 Gbit/s through a dataplane employing FEC
during the failure of the FEC encoder FPGA. At time 15 s, the
link to the FPGA is disabled. The controller, which polls for
the presence of the link at regular intervals, redirects traffic to
a failover FPGA once the down link is detected.

With a polling interval of 1 ms, at most 3% of packets are
lost in the 100 ms interval immediately following the dis-
abling of the link.

Dataplane NAK Failover. We benchmark the NAK mech-
anism described in §5.3 with a simple program on S1 that
offloads a no-op function F. There are two instances of F (F.1
and F.2) that both run on switch S2, but service different
links connected to S1. We measure the number of packets lost
in a scenario where failover from F.1 to F.2 occurs due to
congestion on the link to F.1.

Fig. 21 shows how the number of packets lost varies with
the rate of congestion-inducing background traffic. The Flight-
plan failover mechanism bounds packet loss to a low (< 10)
integer factor of the NAK threshold (T). After the T th NAK is
received, only in-flight packets already queued to F.1 are lost
because every subsequent packet is routed to the failover in-
stance. Without the NAK mechanism, the number of packets
lost is unbounded.

	Introduction
	Motivating Example: Crosspod
	Flightplan Overview
	Rules in Flightplan
	Abstract Program
	Program Segmentation
	Program Abstraction

	Abstract Resource Semantics
	Network Representation

	Flightplan Runtime Support
	Runtime Design
	Runtime Diversity
	Full Runtime
	Headerless Runtime

	Flightplanner
	Abstract Program State
	Proof-based Segment Allocation
	Plan-finding
	Program Splitting

	Evaluation
	Scale, Overhead and Disaggregation
	Flightplan deployment example
	Network Scalability and Operation
	Overheads

	Testbed Evaluation
	Experimental setup.
	Flightplan Planner
	Crosspod.p4 Benchmarks

	Related Work
	Individual Function Evaluation
	Function 1: Forward-Error Correction
	Function 2: Key-Value cache
	Function 3: Header compression

	Single target micro-benchmarks
	Complexity Analysis of Dataplane Disaggregation
	Flightplan header
	Runtime Implementations
	Full Runtime
	Headerless Runtime

	Runtime Overhead
	Complexity Analysis of Headerless Disaggregation
	Comparative complexity
	Modelling Language
	Generating rules from empirical profiles
	Methodology
	Compiling the table
	Converting table into rules

	Program Annotation & Splitting
	Disaggregation microbenchmarks
	Latency Microbenchmarks
	Failover Microbenchmarks

