
Poster: FDP: A teaching and demo platform for P4-based SDN

Heena Nagda�, Rakesh Nagda�, Isaac Pedisich�, Nik Sultana�, Boon Thau Loo�
�Georgia Institute of Technology �University of Pennsylvania

heenan@gatech.edu {rakeshn, iped, nsultana, boonloo}@seas.upenn.edu

Abstract

There are a wealth of good-quality open-source tools
for teaching, learning about, and experimenting with
P4-based SDN. But this tooling and its mode of dis-
tribution is geared towards usage at the level of “nuts
and bolts”, requiring effort to setup even for casual
or inexperienced users, and does not give “big pic-
ture” insight into the network as the system executes.
Our poster describes FDP, a portable platform that
builds on existing tooling to enable end-to-end ex-
perimentation and zero-effort in-browser interactive
visualization, which we envision can benefit teaching
of P4-based SDN and research demonstration.

1 Introduction

Teaching and demonstration that involves P4-based
software-defined networks (SDN) usually relies on
distributing a pre-setup VM for users to run. While
this is sufficiently opaque from excessive detail for
teaching or demonstration, it still requires effort and
adequate resourcing for learners or observers to use
these VMs. Further, while the VM approach is ad-
equate for packaging dependencies, it does not pro-
vide the teacher nor learner with a network-centric
and customizable “big picture” view of how the SDN
is behaving.

In this poster we present the Flightplan Demo Plat-
form (FDP). It is designed with the needs of both
learners and teachers in mind, including researchers
who want to produce an easy-to-access online demo
of their SDN system.

Figure 1 shows an experiment in FDP running over
a fat-tree topology. FDP’s key features include: i)
easy to host: the viewer-facing component of FDP
runs in the browser at no setup cost; ii) easy to
use: viewers are presented with an animated and ex-
plorable 3D topology enriched with visual cues, to
see both the “big picture” of the SDN’s behavior
and the important details; iii) runs offline: the
frontend and backend are decoupled, and demos or
teaching examples can be replayed reliably by many
users concurrently; iv) generic: the network topol-
ogy, P4 programs, and the visual cues are all pa-

Figure 1: FDP facilitates the creation of 3D anima-
tions for viewers, showing the behavior of an SDN
network including packet flows. Teachers or demon-
strators using FDP can customize the interface or the
presentation. This screenshot shows two switches in
a fat-tree topology (k = 4) being highlighted. Users
can change the speed of the visualisation, pause and
rewind it, and navigate the 3D space.

rameters to the system; v) builds on widely-used
systems: such as Unity engine and Mininet, mak-
ing FDP amenable to extension and customization;
vi) portable: all the tooling we use and develop is
portable across POSIX systems.

2 FDP

FDP is structured into two parts: the backend takes
experiment descriptions and executes them to pro-
duce outputs consisting of pcap files and other logs.
The frontend takes this output and produces an in-
browser 3D rendering of the topology showing the
SDN’s behavior. This rendering can be further cus-
tomized to show graphs and visual cues to help the
viewer better understand what they are seeing, or
to understand a detail that is not evident from the
visualization.

1



Figure 2: Screenshot of two instances of an experiment on a fat-tree topology (k = 2). Host p0h0 pings
p1h0, and the latter replies. Left pane: the network is functioning correctly: we see the pings and replies
flowing, and the graph shows that these are equinumerous. Right pane: same setup as in the left pane but
with a lossy link between p0e0 and p0a0 resulting in fewer ICMP replies compared to requests over time.

2.1 FDP Backend

The backend’s users consist of the designers of a
demo or course. The backend relies on Mininet
which emulates a virtual network of hosts, links, and
switches. Switches can run teacher/demonstrator-
selected P4 programs over the Behavioral Model ver-
sion 2 (BMv2) software switch.

Inputs. The network topology is specified as a
YAML file, and network traffic is generated using cus-
tom or third-party tools such as iperf3. The YAML
file is used to configure a virtual Mininet network,
and the BMv2 switch instances running in it.

Outputs. The traffic flow across all the links of the
topology is captured. The switch behavior and im-
portant actions by software running in the network
are logged.

2.2 FDP Frontend

The frontend’s users do not necessarily overlap with
the users of the backend. The frontend’s users consist
of the viewers of a demo or participants in a course.
The frontend runs in the browser and is designed to
provide a rich and customizable interactive visual-
ization to users without burdening them with setup
effort.

Analysis. The raw backend output is analyzed,
collated and summarized into a timeline for the an-
imation. The topology’s YAML description is used

to extract the network’s links and names. Analysis is
done offline, and a metadata file is produced contain-
ing all the attributes necessary to display the network
traffic visualization.

Visualization. FDP uses two mechanisms to pro-
vide visual insight into the SDN. The first mechanism
consists of rendering the topology and showing data
packets travelling through the network. This view
can be augmented using labels, colors and other vi-
sual cues added to the animation’s timeline. The
second mechanism consists of a 2D graph juxtaposed
on the screen to show quantitative information—such
as latency or throughput—that might be difficult for
the viewer to discern from the 3D animation. Fig. 2
shows an example of both mechanisms being used.

User input. Users are completely free to move the
camera around the network and zoom in or out. Since
the network might be large, users can search for nodes
and highlight them. Since the network’s behavior
might be complex, users are provided with buttons to
change the speed of the animation, as well as pause or
rewind it. This greatly helps in tracking the life-cycle
of an individual packet.

Programmability. The frontend is mostly imple-
mented in C# and builds on the Unity game engine.
Teachers, demonstrators, or third-party developers
who want to customize FDP with new features can
do so within an expressive and portable programming
environment.

2


